首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
We study the ancestral genetic process for samples from two large, subdivided populations that are connected by migration to, from, and within a small set of subpopulations, or demes. We consider convergence to an ancestral limit process as the numbers of demes in the two large, subdivided populations tend to infinity. We show that the ancestral limit process for a sample includes a recent instantaneous adjustment to the sample size and structure followed by a more ancient process that is identical to the usual structured coalescent, but with different scaled parameters. This justifies the application of a modified structured coalescent to some hierarchically structured populations.  相似文献   

2.
Matsen FA  Wakeley J 《Genetics》2006,172(1):701-708
In this article we apply some graph-theoretic results to the study of coalescence in a structured population with migration. The graph is the pattern of migration among subpopulations, or demes, and we use the theory of random walks on graphs to characterize the ease with which ancestral lineages can traverse the habitat in a series of migration events. We identify conditions under which the coalescent process in populations with restricted migration, such that individuals cannot traverse the habitat freely in a single migration event, nonetheless becomes identical to the coalescent process in the island migration model in the limit as the number of demes tends to infinity. Specifically, we first note that a sequence of symmetric graphs with Diaconis-Stroock constant bounded above has an unstructured Kingman-type coalescent in the limit for a sample of size two from two different demes. We then show that circular and toroidal models with long-range but restricted migration have an upper bound on this constant and so have an unstructured-migration coalescent in the limit. We investigate the rate of convergence to this limit using simulations.  相似文献   

3.
Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times.  相似文献   

4.
Gene genealogies in a metapopulation   总被引:1,自引:0,他引:1  
Wakeley J  Aliacar N 《Genetics》2001,159(2):893-905
A simple genealogical process is found for samples from a metapopulation, which is a population that is subdivided into a large number of demes, each of which is subject to extinction and recolonization and receives migrants from other demes. As in the migration-only models studied previously, the genealogy of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that dominates the history. This result will hold for metapopulations that are composed of a large number of demes. It is robust to the details of population structure, as long as the number of possible source demes of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are possible, and results for average numbers of pairwise differences within and between demes are given. Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some previously known differences between migration and extinction/recolonization. The ancestral process is also amenable to computer simulation. Simulation results show that migration and extinction/recolonization have very different effects on the site-frequency distribution in a sample from a single deme. Migration can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-frequency distribution at intermediate frequencies, even in a sample from a single deme.  相似文献   

5.
Kai Zeng  Pádraic Corcoran 《Genetics》2015,201(4):1539-1554
It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.  相似文献   

6.
Slade PF  Wakeley J 《Genetics》2005,169(2):1117-1131
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.  相似文献   

7.
We examine genetic statistics used in the study of structured populations. In a 1999 paper, Wakeley observed that the coalescent process associated with the finite island model can be decomposed into a scattering phase and a collecting phase. This decomposition becomes exact in the large population limit with the coalescent at the end of the scattering phase converging to the Ewens sampling formula and the coalescent during the collecting phase converging to the Kingman coalescent. In this paper we introduce a class of limiting models, which we refer to as G/KC models, that generalize Wakeley’s decomposition. G in G/KC represents a completely general limit for the scattering phase, while KC represents a Kingman coalescent limit for the collecting phase. We show that both the island and two-dimensional stepping stone models converge to G/KC models in the large population limit. We then derive the distribution of the statistic F st for all G/KC models under a large sample limit for the cases of strong or weak mutation, thereby deriving the large population, large sample limiting distribution of F st for the island and two-dimensional stepping stone models as a special case of a general formula. Our methods allow us to take the large population and large sample limits simultaneously. In the context of large population, large sample limits, we show that the variance of F st in the presence of weak mutation collapses as O(\frac1logd){O(\frac{1}{\log d})} where d is the number of demes sampled. Further, we show that this O(\frac1logd){O(\frac{1}{\log d})} is caused by a heavy tail in the distribution of F st . Our analysis of F st can be extended to an entire class of genetic statistics, and we use our approach to examine homozygosity measures. Our analysis uses coalescent based methods.  相似文献   

8.
Using a heuristic separation-of-time-scales argument, we describe the behavior of the conditional ancestral selection graph with very strong balancing selection between a pair of alleles. In the limit as the strength of selection tends to infinity, we find that the ancestral process converges to a neutral structured coalescent, with two subpopulations representing the two alleles and mutation playing the role of migration. This agrees with a previous result of Kaplan et al., obtained using a different approach. We present the results of computer simulations to support our heuristic mathematical results. We also present a more rigorous demonstration that the neutral conditional ancestral process converges to the Kingman coalescent in the limit as the mutation rate tends to infinity.  相似文献   

9.
The Yakuts are a Turkic‐speaking population from northeastern Siberia who are believed to have originated from ancient Turkic populations in South Siberia, based on archaeological and ethnohistorical evidence. In order to better understand Yakut origins, we modeled 25 demographic scenarios and tested by coalescent simulation whether any are consistent with the patterns of mtDNA diversity observed in present‐day Yakuts. The models consist of either two simulated demes that represent Yakuts and a South Siberian ancestral population, or three demes that also include a regional Northeast Siberian population that served as a source of local gene flow into the Yakut deme. The model that produced the best fit to the observed data defined a founder group with an effective female population size of only 150 individuals that migrated northwards approximately 1,000 years BP and who experienced significant admixture with neighboring populations in Northeastern Siberia. These simulation results indicate a pronounced founder effect that was primarily kin‐structured and reconcile reported discrepancies between Yakut mtDNA and Y chromosome diversity levels. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Structured coalescent processes are derived for the finite island model under a migration mechanism that conserves the subpopulation sizes. The underlying population model is a modified Moran model in which the reproducing individual can have very many offspring with some probability. Convergence to a structured coalescent process results when assuming that migration follows a coalescent timescale which can be much shorter than the usual Wright–Fisher timescale. Three different limit processes are possible depending on the coalescent timescale, two of which allow multiple mergers of ancestral lines. The expected time to most recent common ancestor, and the expected total size of the genealogy, of balanced and unbalanced samples can be very similar, even when migration is low, if the coalescent process allows multiple mergers. The expected total size increases almost linearly with sample size in some cases. The results have implications for inference about genetic population structure.  相似文献   

11.
The genealogical process for a sample from a metapopulation, in which local populations are connected by migration and can undergo extinction and subsequent recolonization, is shown to have a relatively simple structure in the limit as the number of populations in the metapopulation approaches infinity. The result, which is an approximation to the ancestral behaviour of samples from a metapopulation with a large number of populations, is the same as that previously described for other metapopulation models, namely that the genealogical process is closely related to Kingman's unstructured coalescent. The present work considers a more general class of models that includes two kinds of extinction and recolonization, and the possibility that gamete production precedes extinction. In addition, following other recent work, this result for a metapopulation divided into many populations is shown to hold both for finite population sizes and in the usual diffusion limit, which assumes that population sizes are large. Examples illustrate when the usual diffusion limit is appropriate and when it is not. Some shortcomings and extensions of the model are considered, and the relevance of such models to understanding human history is discussed.  相似文献   

12.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

13.
Cutter AD  Wang GX  Ai H  Peng Y 《Molecular ecology》2012,21(6):1345-1359
Molecular hyperdiversity has been documented in viruses, prokaryotes and eukaryotes. Such organisms undermine the assumptions of the infinite-sites mutational model, because multiple mutational events at a site comprise a non-negligible portion of polymorphisms. Moreover, different sampling schemes of individuals from species with subdivided populations can profoundly influence resulting patterns and interpretations of molecular variation. Inspired by molecular hyperdiversity in the nematode Caenorhabditis sp. 5, which exhibits average pairwise differences among synonymous sites of >5% as well as modest population structure, we investigated via coalescent simulation the joint effects of a finite-sites mutation (FSM) process and population subdivision on the variant frequency spectrum. From many demes interconnected through a stepping-stone migration model, we constructed local samples from a single deme, pooled samples from several demes and scattered samples of a single individual from numerous demes. Compared with a single panmictic population at equilibrium, we find that high population mutation rates induce a deficit of rare variants (positive Tajima's D) under a FSM model. Population structure also induces such a skew for local samples when migration is high and for pooled samples when migration is low. Contrasts of sampling schemes for C. sp. 5 imply high mutational input coupled with high migration. We propose that joint analysis of local, pooled and scattered samples for species with subdivided populations provides a means of improving inference of demographic history, by virtue of the partially distinct patterns of polymorphism that manifest when sequences are analyzed according to differing sampling schemes.  相似文献   

14.
Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. Using a perturbation method for processes with multiple time scales, we show that as the number of demes tends to infinity, the overall frequency converges to a diffusion process that is also the diffusion approximation for a finite, panmictic population subject to temporally fluctuating selection. We find that the coefficients of this process have a complicated dependence on deme size and migration rate, and that changes in these demographic parameters can determine both the balance between the dispersive and stabilizing effects of environmental variation and whether selection favors alleles with lower or higher fitness variance.  相似文献   

15.
Martin G  Otto SP  Lenormand T 《Genetics》2006,172(1):593-609
In finite populations, linkage disequilibria generated by the interaction of drift and directional selection (Hill-Robertson effect) can select for sex and recombination, even in the absence of epistasis. Previous models of this process predict very little advantage to recombination in large panmictic populations. In this article we demonstrate that substantial levels of linkage disequilibria can accumulate by drift in the presence of selection in populations of any size, provided that the population is subdivided. We quantify (i) the linkage disequilibrium produced by the interaction of drift and selection during the selective sweep of beneficial alleles at two loci in a subdivided population and (ii) the selection for recombination generated by these disequilibria. We show that, in a population subdivided into n demes of large size N, both the disequilibrium and the selection for recombination are equivalent to that expected in a single population of a size intermediate between the size of each deme (N) and the total size (nN), depending on the rate of migration among demes, m. We also show by simulations that, with small demes, the selection for recombination is stronger than both that expected in an unstructured population (m = 1 - 1/n) and that expected in a set of isolated demes (m = 0). Indeed, migration maintains polymorphisms that would otherwise be lost rapidly from small demes, while population structure maintains enough local stochasticity to generate linkage disequilibria. These effects are also strong enough to overcome the twofold cost of sex under strong selection when sex is initially rare. Overall, our results show that the stochastic theories of the evolution of sex apply to a much broader range of conditions than previously expected.  相似文献   

16.
We investigate the probability of fixation of a chromosome rearrangement in a subdivided population, concentrating on the limit where migration is so large relative to selection (m ? s) that the population can be thought of as being continuously distributed. We study two demes, and one- and two-dimensional populations. For two demes, the probability of fixation in the limit of high migration approximates that of a population with twice the size of a single deme: migration therefore greatly reduces the fixation probability. However, this behavior does not extend to a large array of demes. Then, the fixation probability depends primarily on neighborhood size (Nb), and may be appreciable even with strong selection and free gene flow (≈exp(-B ≈ Nbs) in one dimension, ≈exp(-B ≈ Nb) in two dimensions). Our results are close to those for the more tractable case of a polygenic character under disruptive selection.  相似文献   

17.
Conventional coalescent inferences of population history make the critical assumption that the population under examination is panmictic. However, most populations are structured. This complicates the prevailing coalescent analyses and sometimes leads to inaccurate estimates. To develop a coalescent method unhampered by population structure, we perform two analyses. First, we demonstrate that the coalescent probability of two randomly sampled alleles from the immediate preceding generation(one generation back)is independent of population structure. Second, motivated by this finding, we propose a new coalescent method: i-coalescent analysis. The i-coalescent analysis computes the instantaneous coalescent rate by using a phylogenetic tree of sampled alleles. Using simulated data, we broadly demonstrate the capability of i-coalescent analysis to accurately reconstruct population size dynamics of highly structured populations, although we find this method often requires larger sample sizes for structured populations than for panmictic populations. Overall, our results indicate i-coalescent analysis to be a useful tool, especially for the inference of population histories with intractable structure such as the developmental history of cell populations in the organs of complex organisms.  相似文献   

18.
Probabilities of monophyly, paraphyly, and polyphyly of two-species gene genealogies are computed for modest sample sizes and compared for two different Λ coalescent processes. Coalescent processes belonging to the Λ coalescent family admit asynchronous multiple mergers of active ancestral lineages. Assigning a timescale to the time of divergence becomes a central issue when different populations have different coalescent processes running on different timescales. Clade probabilities in single populations are also computed, which can be useful for testing for taxonomic distinctiveness of an observed set of monophyletic lineages. The coalescence rates of multiple merger coalescent processes are functions of coalescent parameters. The effect of coalescent parameters on the probabilities studied depends on the coalescent process, and if the population is ancestral or derived. The probability of reciprocal monophyly tends to be somewhat lower, when associated with a Λ coalescent, under the null hypothesis that two groups come from the same population. However, even for fairly recent divergence times, the probability of monophyly tends to be higher as a function of the number of generations for coalescent processes that admit multiple mergers, and is sensitive to the parameter of one of the example processes.  相似文献   

19.
Wakeley J  Lessard S 《Genetics》2003,164(3):1043-1053
We develop predictions for the correlation of heterozygosity and for linkage disequilibrium between two loci using a simple model of population structure that includes migration among local populations, or demes. We compare the results for a sample of size two from the same deme (a single-deme sample) to those for a sample of size two from two different demes (a scattered sample). The correlation in heterozygosity for a scattered sample is surprisingly insensitive to both the migration rate and the number of demes. In contrast, the correlation in heterozygosity for a single-deme sample is sensitive to both, and the effect of an increase in the number of demes is qualitatively similar to that of a decrease in the migration rate: both increase the correlation in heterozygosity. These same conclusions hold for a commonly used measure of linkage disequilibrium (r(2)). We compare the predictions of the theory to genomic data from humans and show that subdivision might account for a substantial portion of the genetic associations observed within the human genome, even though migration rates among local populations of humans are relatively large. Because correlations due to subdivision rather than to physical linkage can be large even in a single-deme sample, then if long-term migration has been important in shaping patterns of human polymorphism, the common practice of disease mapping using linkage disequilibrium in "isolated" local populations may be subject to error.  相似文献   

20.
The structured coalescent describes the ancestral relationship among sampled genes from a geographically structured population. The aim of this article is to apply the central limit theorem to functionals of the migration process to study coalescence times and population structure. An application of the law of large numbers to the migration process leads to the strong migration limit for the distributions of coalescence times. The central limit theorem enables us to obtain approximate distributions of coalescence times for strong migration. We show that approximate distributions depend on the population structure. If migration is conservative and strong, we can define a kind of effective population size N e *, with which the entire population approximately behaves like a panmictic population. On the other hand, the approximate distributions for nonconservative migration are qualitatively different from those for conservative migration. And the entire population behaves unlike a panmictic population even though migration is strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号