首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
无透镜显微成像(lens-free microscopy)是一种在不借助透镜的情况下进行成像的技术。它基于Gabor同轴全息原理,利用面阵探测器采集原始全息图,随后通过数字图像处理技术重建样本,从而实现数字显微成像。像素超分辨技术缩小了等效像素,提供更多细节信息使得再现像的分辨率得以直接提升,而且多种相位恢复手段通过去除孪生像也达到了间接提高分辨率的目的,尤其是对密集样本。无透镜显微成像技术突破了传统光学显微镜由透镜带来的空间带宽积的限制,实现了大视野范围下的高分辨率成像,因此,这一技术能够提供大视场下的临床样本快速诊断和准确检测。另外,新兴的算法和硬件都在不断地加快数据采集和计算速度,扩展了其在高速运动样本和纳米尺度样本上的应用。最近无透镜技术和其配套硬件设备发展方向趋向于硬件紧凑、算法密集、实时、三维、彩色、高分辨率的便携式分立器件或配件。  相似文献   

2.
在古生物学研究中,以X射线断层成像(Computed Tomography)为代表的三维无损成像技术可以在不破坏化石标本的前提下,同时获得标本外观形态和内部结构的信息,相比传统的可见光成像手段有着明显优势。为推动化石三维无损成像技术在国内古生物学领域的发展,本文系统介绍一种新型显微CT技术——三维X射线显微术(Three-Dimensional X-ray Microscopy)。与基于几何放大和吸收衬度成像的传统显微CT技术相比,该技术有若干优势:(1)将同步辐射X射线显微断层成像的光学成像系统引入基于实验室X射线源的显微CT系统中,在几何放大的基础上增加了光学放大,优化了传统显微CT的系统架构,弥补了传统显微CT单纯依靠几何放大的不足,提高了空间分辨率;(2)采用可移动的X射线源和优化的光学成像系统,实现了低能X射线相位衬度成像,可以三维重构传统显微CT技术无法有效探测的、低吸收衬度的化石标本;(3)基于新的成像架构和成像算法,实现了厘米-分米级较大标本内部"感兴趣区域"(Region of Interest)精确导航和局部高分辨率(微米-亚微米空间分辨)成像;(4)可以实现小型扁平标本(宽厚比4,宽10cm)高效率、高分辨率成像和长条形微体标本长轴方向自动分段无缝拼接的微米至亚微米级高分辨率重建,弥补了传统工业显微CT针对小型扁平标本和长条形微体标本高分辨成像效果不佳的缺陷。这些优势使得基于实验室X射线源的显微CT成像技术可以获得接近同步辐射X射线源的成像质量,从而有效推动化石生物学研究。  相似文献   

3.
本文建立了一套微波热声实时成像系统,该系统由脉冲微波发生器,多元环形探测器,多通道数据采集装置和数据重建装置共同组成。在实验中,利用填充盐水的两个塑料管验证其实时成像的性能,结果表明,该系统能够实现每秒16.7帧的成像速度。随后,对活体小鼠的正常区域和肿瘤区域分别进行热声成像,得到肿瘤和正常区域的对比度为1.7∶1,证明了该系统在肿瘤检测中有较高的对比度。最后,利用该系统监控细管趋近离体肿瘤的过程。因此该系统有望应用于实时监测。综上所述,该热声成像系统具有无损,成像速度快和大视场的良好性能,有望在生物医学中得到广泛的应用,尤其在肿瘤筛查和实时监控方面发挥作用。  相似文献   

4.
通过对荧光显微光学切片断层成像系统实际成像过程中激光器、液位、平移台等运行状态的分析,针对性设计了对这些关键部件工作状态进行监测的方法。在此基础上,进一步研制了一套可远程监测成像系统工作状态的装置,实现了对成像系统中激光器、液位以及平移台等实时状态的监测,将成像系统从开环工作状态转变为了带实时反馈的可监控工作状态。远程监控装置的使用提高了荧光显微光学切片断层成像系统的实用性与稳定性,提高了所获取数据的完整性。  相似文献   

5.
构建一套基于环形阵探测器的快速光声成像系统用于生物组织的结构成像。该系统以环形阵探测器探测光声信号,采用八通道的采集系统采集光声信号,再利用有限场滤波反投影算法重建光声图像。利用埋有铅笔芯的琼脂样品来测试该系统的分辨率,利用离体猪眼和在体老鼠头部血管成像来验证系统的成像能力。实验结果表明,该系统能方便快速地实现生物组织的结构成像,有望实现早期乳腺癌的临床检测应用。  相似文献   

6.
双光子荧光显微镜是神经科学研究中的重要观测仪器,但是现有的商品化仪器受限于较低的成像速度,难以满足脑功能研究中毫秒量级神经信号检测的需要.基于声光偏转器的快速随机扫描双光子显微成像技术,有望在保持信噪比的同时提高观测速度.本文综述了这一研究的最新进展,从飞秒激光经过角色散器件后的时空演化理论、声光偏转器的色散补偿方法、随机扫描成像仪器及仪器应用到神经成像时钙信号的识别方法四个方面分别进行介绍,最后分析了随机扫描双光子显微成像技术的发展趋势.这项技术的系统深入研究将为神经活动观测提供一种全新的方法,推动脑科学研究的发展.  相似文献   

7.
目的 细胞温度成像可以帮助科学家研究和理解细胞内部的温度分布,揭示细胞代谢和生物化学过程的关键信息。目前,基于荧光温度探针的细胞温度成像技术存在低温度分辨率和有限测量范围等限制。本文旨在利用单分子量子相干过程依赖温度的特性,开发一种单细胞温度成像和实时检测技术。方法 基于飞秒脉冲激光制备延时和相位可调的飞秒脉冲对,调制的脉冲对通过显微系统激发细胞内标记的荧光单分子,之后收集并记录每个荧光光子的到达时间。利用单分子相干过程与周围环境温度的关系,定义单分子量子相干可视度(V),建立V与环境温度的对应关系。通过调制解调荧光光子的到达时间,获取单分子周围环境温度,结合扫描成像,实现细胞的温度成像和实时检测。结果 该方法可以实现高精度(温度分辨率<0.1℃)和大范围温度(10~50℃)的温度成像和测量,并观测到了单个细胞代谢相关的温度变化。结论 该研究有助于深入了解细胞代谢、蛋白质功能和疾病机制,为生物医学研究提供重要工具。  相似文献   

8.
大脑最基本性质是快速适应周围环境改变的能力,这主要是通过改变各个神经细胞之间的连接来实现的。有多种不同机制可以调节突触的强度,包括突触效率的稳态调节、突触增强和减弱的形态学表现以及钙在其中的作用。当开始了解这些突触改变的细胞生物学机制的时候,也应该考虑这种突触可塑性在完整大脑中的功能意义。因此,应用最新的成像手段来研究经验如何影响皮层环路中突触的改变,尤其是在体双光子显微技术可以在新皮层的单个神经元水平上研究形态和功能可塑性。这些实验将逐渐填补传统的细胞水平和系统水平研究之间的空白,并将有助于更全面充分地理解突触可塑性这种现象及其在皮层功能乃至动物行为中所起的作用。  相似文献   

9.
显微技术经过快速发展,已经突破了光学衍射极限,目前主要包含受激发射损耗显微术(STED)、结构光照明显微镜(SIM)、光激活定位显微成像(PALM)、随机光学重构显微术(STORM)、基于最少光子数的纳米尺度定位(MINFLUX)、结合结构光照明技术的MINFLUX技术变体(SIMFLUX)等技术。STORM技术具有优越性,在其基础上叠加多色成像技术(目前有6种),本文介绍了目前最新的多色成像技术以及分光成像实现的三通道成像技术。分光成像实现的三通道成像存在光谱串色、通道对齐误差等影响,基于此介绍了相关的优化算法原理。展示了在三通道STORM显微成像平台上实现的COS-7细胞成像。说明三通道STORM显微成像的优越性。  相似文献   

10.
刘丹妮  武海萍  周国华 《遗传》2023,(4):306-323
核酸检测因灵敏度高、特异性强而被广泛应用于病原体筛查与检测。随着检测需求的增加和扩增技术的发展,核酸检测方法逐渐向简单、快速、低成本方向发展。作为核酸检测“金标准”的实时荧光定量PCR法依赖昂贵的荧光读取设备和专业的操作人员,并不适用于病原体的现场快速检测。可视化检测方法无需依赖激发光源或复杂的设备,将可视化检测方法与快速、高效的扩增技术结合,能够以更直观、便携的方式呈现检测结果,具有即时检测(point-of-care testing,POCT)的潜力。本文对与扩增技术、CRISPR/Cas技术结合的可视化分析在病原体核酸快速检测中的应用及优缺点展开综述,以期为基于病原体核酸的POCT策略提供参考。  相似文献   

11.
目的 在体外循环系统中,血栓的在线检测和可视化具有重要意义。本文提出了基于电阻抗成像(EIT)的体外循环血栓非侵入在线检测方法。方法 首先通过联合仿真研究了传感器尺寸对成像效果的影响。其次,根据仿真结果设计了直径为20 mm的16铜质电极EIT传感器,搭建了循环流动实验平台,并设计了静态和循环流动实验。使用尺寸为3~6 mm的猪血块代替血栓,将血块置于新鲜猪血样本中,采用Tikhonov正则化算法进行成像。将3 mm和5 mm的血块分别置于循环系统中,重建血块在传感器截面的大小和位置图像,并与高速相机拍摄结果进行对比。结果 仿真结果显示当目标物与传感器面积比(AR)不小于0.01时,传感器直径为20 mm和30 mm对应的图像相关系数(IC)均大于0.06,成像效果较好。静态成像结果显示,相对尺寸覆盖率误差(RCR)小于等于0.1。循环流动实验显示,血块经过传感器时,检测到归一化后的相对电导率变化值分别为80和200,结果显示该方法能够检测到循环系统中的血块。结论 该方法具有实时性和非侵入的优点,有望应用于体外血栓的检测。  相似文献   

12.
目的:检测儿童的平衡能力和下肢力量,研究评估儿童运动能力的相关指标。方法:设计了一套便携式运动能力检测系统,检测儿童的平衡能力和下肢力量。本系统由运动能力检测设备和上位机数据分析存储展示部分组成。结果:研制的便携式运动能力检测系统具有可穿戴、功耗低等优点,能够准确地记录儿童的运动数据。结论:便携式运动能力检测系统能够检测使用者在运动过程中的平衡数据和下肢力量数据,及时发现运动能力的缺陷,为儿童的日常生活和锻炼提供参考。  相似文献   

13.
BackgroundSoil-transmitted helminths (STHs) are parasitic nematodes that inhabit the human intestine. They affect more than 1.5 billion people worldwide, causing physical and cognitive impairment in children. The global strategy to control STH infection includes periodic mass drug administration (MDA) based on the results of diagnostic testing among populations at risk, but the current microscopy method for detecting infection has diminished sensitivity as the intensity of infection decreases. Thus, improved diagnostic tools are needed to support decision-making for STH control programs.MethodologyWe developed a nucleic acid amplification test based on recombinase polymerase amplification (RPA) technology to detect STH in stool. We designed primers and probes for each of the four STH species, optimized the assay, and then verified its performance using clinical stool samples.Principal findingsEach RPA assay was as sensitive as a real-time polymerase chain reaction (PCR) assay in detecting copies of cloned target DNA sequences. The RPA assay amplified the target in DNA extracted from human stool samples that were positive for STH based on the Kato-Katz method, with no cross-reactivity of the non-target genomic DNA. When tested with clinical stool samples from patients with infections of light, moderate, and heavy intensity, the RPA assays demonstrated performance comparable to that of real-time PCR, with better results than Kato-Katz. This new rapid, sensitive and field-deployable method for detecting STH infections can help STH control programs achieve their goals.ConclusionsSemi-quantitation of target by RPA assay is possible and is comparable to real-time PCR. With proper instrumentation, RPA assays can provide robust, semi-quantification of STH DNA targets as an alternative field-deployable indicator to counts of helminth eggs for assessing infection intensity.  相似文献   

14.
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy.  相似文献   

15.
生物光学传感器是一种对生物物质敏感并将其浓度转换为光信号,再由光电器件转换成电信号进行检测的仪器。由于随着微加工技术和纳米技术的进步,生物光学传感器将不断的微型化,各种便携式生物光学传感器的出现使得人们在家中进行疾病诊断、在市场上直接检测食品及在野外快速检测环境污染成为可能。便携式生物光学传感器一般由光源、光学通路和光电元件三部分组成。传感器结构中各个组件的优化处理将有利于检测设备在实际运用中的便利性和在复杂环境中的适用性,同时也有利于提高生物检测的灵敏度。主要从激励光源的选择、生物光学检测的原理、用于传感光源分析的半导体光敏元件3方面,描述近年来常见的便携式生物光学传感器的研究进展。未来生物检测器件将趋于成本低廉、便携快捷、智能高效等特点,基于生物光学反应特性的研究和传感器结构制备的优化将使得便携式生物光学传感器在未来传感检测应用中具有巨大的商业价值和广泛的实用价值。  相似文献   

16.
目的 对肺通气过程进行床旁实时连续图像监控,是机械通气患者和临床医生的迫切需求。肺部电阻抗成像(EIT)可反映呼吸引起的胸腔电特性变化分布,在肺通气监测方面具有天然的优势。本文目的在于建立基于径向基函数神经网络(RBFNN)的肺部加权频差电阻抗成像(wfd-EIT)方法,实现对肺通气的高空间分辨率成像。方法 利用肺部wfd-EIT成像方法实时描绘胸腔电导率分布状况,再通过RBFNN将目标区域可视化并精准识别其边界信息。首先通过数值分析模拟,在各个激励频率利用COMSOL与MATLAB软件建立2 028个仿真样本,分为训练样本集和测试样本集,验证所提出成像方法的可行性和有效性。其次,为了验证仿真结果,建立肺部物理模型,选用具有低电导特性的生物组织模拟肺部通气区域,对其进行成像实验,并采用图像相关系数(ICC)和肺区域比(LRR)定量数据衡量成像方法的准确性。结果 wfd-EIT方法可以在任意时刻进行图像重建,并能够准确反映出目标区域的电特性分布;利用基于RBFNN的算法能够增强目标区域的成像精度,ICC可达0.94以上,更好地凸显其边界轮廓信息。结论 通过wfd-EIT成像方法,利用多频阻抗谱同步测量实现目标区域的快速可视化,并结合RBFNN网络逼近任意非线性函数的优点,实现对目标区域电特性变化的精准识别,为下一步进行临床肺通气的EIT图像监测奠定了理论和技术基础。  相似文献   

17.
A novel optical signal element based on homogeneous bioluminescence resonance energy transfer (BRET) was developed for biomolecular detection. A fluorescent dye and alkaline phosphatase (AP) conjugate was used as a reporter and light‐generation element for imaging detection platforms that use a CCD camera or CMOS chip‐based devices. In the presence of a luminescence substrate, the energy from the first light emission of a bioluminescence enzymatic reaction was transferred to fluorescent dyes which were conjugated to an enzyme. This resulted in a second light emission with a shorter wavelength. The second light was localized at the position of target molecules without the diffusion problems present in current technology. To optimize energy transfer efficiency, the ratio of enzyme to fluorophore in the conjugates, the fluorescent dyes used in the conjugates and the luminescence substrates used for BRET were investigated. BRET was demonstrated by using both a CCD camera and a CMOS imaging device. Image spatial resolution was greatly improved compared with conventional chemiluminescence detection. This new signal element opens a door for the direct measurement of fluorescent signals on an imaging chip without an external light source and portable instrumentation normally required for the fluorescent detection of biomolecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
BackgroundSingle-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically.Scope of reviewThis paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy.Major conclusionssmFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on.General significanceQuantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.  相似文献   

19.
Background and objective: Toenail is an advantageous biomarker to assess exposure to metals such as manganese and mercury. Toenail Mn and Hg are in general analyzed by chemical methods such as inductively coupled plasma mass spectrometry and atomic absorption spectrophotometry. In this project, a practical and convenient technology—portable X-ray florescence (XRF)—is studied for the noninvasive in vivo quantification of manganese and mercury in toenail.

Material and methods: The portable XRF method has advantages in that it does not require toenail clipping and it can be done in 3?min, which will greatly benefit human studies involving the assessment of manganese and mercury exposures. This study mainly focused on the methodology development and validation which includes spectral analysis, system calibration, the effect of toenail thickness, and the detection limit of the system. Manganese- and mercury-doped toenail phantoms were made. Calibration lines were established for these measurements.

Results: The results show that the detection limit for manganese is 3.65?μg/g (ppm) and for mercury is 0.55?μg/g (ppm) using 1?mm thick nail phantoms with 10?mm soft tissue underneath.

Discussion and conclusion: We conclude that portable XRF is a valuable and sensitive technology to quantify toenail manganese and mercury in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号