首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail.  相似文献   

2.
In social insects, worker specialization in location-related tasks could occur if they return to the same location over time. Location and task fidelity was tested in the acacia ants Pseudomyrmex spinicola, which nest inside the swollen spines of the tree, and all workers enter the spines at night and during rain. Workers were marked and followed at three locations: on the leaves, tree trunk, and ground near the plant. Behavioral tests were performed, testing the reactions of marked ants toward the food used to feed the larvae (Beltian Bodies, “BB”), and to brood outside the spines. Marked ants and ants of known age were tested for responses to disturbance of the spines. Ants were more likely to occur in the location where they were originally marked. Trunk-marked ants discarded the BB when it had a foliole fragment attached to it, while leaf-marked ants carried it to the spine. Trunk-marked ants left larvae and exited from disturbed spines more frequently than other ants. Leaf-marked ants carried larvae and pupae more often than trunk-marked ants. Spine-marked ants left pupae more often than trunk- or leaf-marked ants. When considering age, older ants reacted aggressively when threatened, whereas younger ants protected the brood. However, younger ants reacted more aggressively when older ants were absent, and older ants were more aggressive in the presence of larvae. In sum, the spatial segregation of the ants coincided with behavioral differences, and different behavioral responses are related to the age of the ant.  相似文献   

3.
Communication in ants is based to a great extent on chemical compounds. Recognition of intruders is primarily based on cuticular hydrocarbon (CHC) profile matching but is prone to being cheated. Eucharitid wasps are specific parasitoids of the brood of ants; the immature stages are either well integrated within the colony or are protected within the host cocoons, whereas adult wasps at emergence must leave their host nest to reproduce and need to circumvent the ant recognition system to escape unscathed. The behavioral interactions between eucharitid wasps and workers of their host, the Neotropical ant Ectatomma tuberculatum, are characterized. In experimental bioassays, newly emerged parasitoids were not violently aggressed. They remained still and were grabbed by ants upon contact and transported outside the nest; host workers were even observed struggling to reject them. Parasitoids were removed from the nest within five minutes, and most were unharmed, although two wasps (out of 30) were killed during the interaction with the ants. We analyzed the CHCs of the ant and its two parasitoids, Dilocantha lachaudii and Isomerala coronata, and found that although wasps shared all of their compounds with the ants, each wasp species had typical blends and hydrocarbon abundance was also species specific. Furthermore, the wasps had relatively few CHCs compared to E. tuberculatum (22–44% of the host components), and these were present in low amounts. Wasps, only partially mimicking the host CHC profile, were immediately recognized as alien and actively removed from the nest by the ants. Hexane-washed wasps were also transported to the refuse piles, but only after being thoroughly inspected and after most of the workers had initially ignored them. Being recognized as intruder may be to the parasitoids’ advantage, allowing them to quickly leave the natal nest, and therefore enhancing the fitness of these very short lived parasitoids. We suggest that eucharitids take advantage of the hygienic behavior of ants to quickly escape from their host nests.  相似文献   

4.
Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.  相似文献   

5.
Most ant genera are thought to have monomorphic workers, indicating perhaps a high degree of flexibility in task allocation, and the well-studied genus Temnothorax is an example of this. However, considerable size variation may exist between individuals. In addition, though workers can show flexible behavior, it has been shown that individuals may consistently differ in their task profiles. Here we test whether body size variation among workers affects foraging behavior. Two main hypotheses were tested: first, whether larger ants forage at greater distance from the nest, and second, whether larger individuals show a higher propensity to work outside of the nest. Our results showed that ant body size does not significantly affect foraging distance. However, larger ants were more likely to be found outside the nest. Though Temnothorax ants are a common model system, this is the first study demonstrating task allocation based on body size, which is fixed in adults. Our study suggests that particularly small species may have to be examined carefully for body size variation before concluding that body size is uniform and therefore irrelevant for task allocation.  相似文献   

6.
This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.  相似文献   

7.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

8.
We briefly review the literature on the division of labour in ant colonies with monomorphic worker populations, and show that there are anomalies in current theories and in the interpretation of existing data sets. Most ant colonies are likely to be in unstable situations and therefore we doubt if an age-based division of labour can be sufficiently flexible. We present data for a type of small ant colony in a highly seasonal environment, concentrating on individually marked older workers. We show that contrary to expectation such workers undertake a wide variety of tasks and can even retain their ability to reproduce, even whilst younger workers are actively foraging. Our analysis shows that old workers occupy four distinct spatial stations within the nest and that these are related to the tasks they perform. We suggest that correlations between age and task in many ant colonies might simply be based on ants foraging for work, i.e. actively seeking tasks to perform and remaining faithful to these as long as they are profitably employed. For this reason, employed older workers effectively displace unemployed younger workers into other tasks. In a companion paper, Tofts 1993,Bull. math. Biol. develops an algorithm that shows how foraging for work can be an efficient and flexible mechanism for the division of labour in social insects. The algorithm creates a correlation between age and task purely as a by-product of itsmodus operandi.  相似文献   

9.
Living in groups constitutes the root of social organizationin animals. Likewise, the spatial aggregation between membersof insects societies plays a crucial role in social cohesionand division of labor, namely, in polymorphic ant species. Inthe present paper, we show caste-specific aggregation patternsin the strictly dimorphic Pheidole pallidula ant species. Weinvestigate the influence on the clustering of ants exertedby direct contacts between nest mates as well as by indirectcues through chemical marking. In a homogeneous environmentdeprived of chemical cues, majors show a higher aggregationlevel than minors and a centripetal behavior. By contrast, minorsare more scattered in the experimental arena and display a centrifugalbehavior. In addition, area marking laid by minors enhancestheir own aggregative behavior while contributing to the localizationof the spontaneously aggregating majors. Such differences inaggregative patterns as well as their adaptive value have tobe coupled with the mobility level and the task performanceefficiency of each worker caste. Contrary to majors that arelikely to aggregate, highly mobile minors, scattered insideand outside the nest colony, can detect colony needs and cancarry out most of the daily tasks for which they are more efficientthan majors.  相似文献   

10.
In social insects behavioral consequences of shortened life expectancy include, among others, increased risk proneness and social withdrawal. We investigated the impact of experimental shortening of life expectancy of foragers of the ant Formica cinerea achieved by their exposure to carbon dioxide on the expression of rescue behavior, risky pro-social behavior, tested by means of two bioassays during which a single worker (rescuer) was confronted with a nestmate (victim) attacked by a predator (antlion larva capture bioassay) or immobilized by an artificial snare (entrapment bioassay). Efficacy of carbon dioxide poisoning in shortening life expectancy was confirmed by the analysis of ant mortality. Rescue behavior observed during behavioral tests involved digging around the victim, transport of the sand covering the victim, pulling the limbs/antennae/mandibles of the victim, direct attack on the antlion (in antlion larva capture tests), and snare biting (in entrapment tests). The rate of occurrence of rescue behavior was lower in ants with shortened life expectancy, but that effect was significant only in the case of the entrapment bioassay. Similarly, only in the case of the entrapment bioassay ants with shortened life expectancy displayed rescue behavior after a longer latency and devoted less time to that behavior than ants from the control groups. Our results demonstrated that in ant workers shortened life expectancy may lead to reduced propensity for rescue behavior, most probably as an element of the social withdrawal syndrome that had already been described in several studies on behavior of moribund ants and honeybees.  相似文献   

11.
Summary: Social insect colonies can respond to changes in resource availability by altering their foraging behavior. Colonies of the desert ant, Aphaenogaster cockerelli, responded to experimental changes in the distribution and type of available resources by adjusting the numbers of ants engaged in foraging and other tasks outside the nest, and by adjusting the temporal patterns of these activities. Colonies foraged more intensely for protein resources than for seed resources, and for high-density resources more than for low-density resources. This flexible allocation and resource use may promote coexistence with interspecific competitors such as ants in the genus Myrmecocystus.  相似文献   

12.
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the ''entrance chamber''. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.  相似文献   

13.
This work is part of a study on the social organization ofDiacamma rugosum, a large ponerine ant, which lacks a distinctive reproductive queen. This ant forms a small colony and frequently changes its nest site when the environmental conditions become unfavourable. Experiments in the laboratory showed that slight physical disturbances easily caused colony movement. The process of movement consisted of 3 successive phases: a) an exploration period, b) an movement period and c) a final movement period. The movement was organized by leader ants and 5 to 25% of all workers became leaders. These workers showed both tandem running and carrying behaviour during movement, tandem running being employed to recruit workers, whereas carrying behaviour was strictly limited to carrying eggs, larvae, pupae and males. During movement most of the tandem leader ants are those engaged in outdoor works in daily life. Potential of workers to become tandem leaders was correlated with outside works undertaken in daily life.  相似文献   

14.
The success of social animals (including ourselves) can be attributed to efficiencies that arise from a division of labour. Many animal societies have a communal nest which certain individuals must leave to perform external tasks, for example foraging or patrolling. Staying at home to care for young or leaving to find food is one of the most fundamental divisions of labour. It is also often a choice between safety and danger. Here we explore the regulation of departures from ant nests. We consider the extreme situation in which no one returns and show experimentally that exiting decisions seem to be governed by fluctuating record signals and ant-ant interactions. A record signal is a new ‘high water mark’ in the history of a system. An ant exiting the nest only when the record signal reaches a level it has never perceived before could be a very effective mechanism to postpone, until the last possible moment, a potentially fatal decision. We also show that record dynamics may be involved in first exits by individually tagged ants even when their nest mates are allowed to re-enter the nest. So record dynamics may play a role in allocating individuals to tasks, both in emergencies and in everyday life. The dynamics of several complex but purely physical systems are also based on record signals but this is the first time they have been experimentally shown in a biological system.  相似文献   

15.
In the process of seed dispersal by ants (myrmecochory), foragers bring diaspores back to their nest, then eat the elaiosome and usually reject viable seeds outside the nest. Here, we investigate what happens inside the nest, a barely known stage of the myrmecochory process, for two seed species (Viola odorata, Chelidonium majus) dispersed either by the insectivorous ant Myrmica rubra or by the aphid-tending ant Lasius niger. Globally, elaiosome detachment decreased ants’ interest towards seeds and increased their probability of rejecting them. However, we found marked differences in seed management by ants inside the nest. The dynamics of elaiosome detachment were ant- and plant-specific whereas the dynamic of seed rejection were mainly ant-specific. Seeds remained for a shorter period of time inside the nest of the carnivorous ant Myrmica rubra than in Lasius niger nest. Thus, elaiosome detachment and seed rejection were two competing dynamics whose relative efficiency leads to variable outcomes in terms of types of dispersed items and of nutrient benefit to the ants. This is why some seeds remained inside the nest even without an elaiosome, and conversely, some seeds were rejected with an elaiosome still attached. Fresh seeds may be deposited directly in contact with the larvae. However, the dynamics of larvae-seeds contacts were also highly variable among species. This study illustrates the complexity and variability of the ecological network of ant–seed interactions.  相似文献   

16.
During reproduction, ant colonies produce winged queens. These new queens usually leave the nest to mate and can then establish a new nest. If the new nest is close to an existing colony, it will be in competition with the existing colony. Therefore, workers will kill any mated queens they find outside the colony during the reproductive season. In this study, factors that might determine whether workers eliminate queens were investigated. Mating status (mated or unmated), colony origin (same or different to tested workers) and mating partners (inbred or outbred) of the queens of Japanese harvester ants (Messor aciculatus) were manipulated and the workers’ behavior towards the queens was observed. Mated queens were always attacked by workers, though this was not affected by either colony origin or mating partners. These results suggest that mating status triggers elimination of queens by workers, and that the colony origin and mating partner are unlikely to be important roles in elimination of queens.  相似文献   

17.
Moore W  Song XB  Di Giulio A 《ZooKeys》2011,(90):63-82
Larvae of the ground beetle genus Eustra Schmidt-Goebel are described and illustrated for the first time and some biological notes are reported. One specimen of an unknown Eustra species was collected while excavating a nest of the ant Pachycondyla javana Mayr, in Taiwan, which is the first report of a paussine associated with a member of the ant subfamily Ponerinae. Several larvae and adults of a second species, Eustra chinensis Bänninger, were collected in Shanghai under bark with no association with ants. First instar larvae of the latter species were also reared in the lab. The occurrence of larvae of the genus Eustra both inside and outside ant nests, together with a report of adults collected inside a nest in Taiwan, suggests that members of this genus may be facultative predators or facultative symbionts of ants, an attribute that has never been reported for this genus. The larvae of Eustra show several unique features, including a peculiar bidentate mandibular apex, an extremely long galea, one of two tarsal claws greatly reduced, abdominal setae (including those of terminal disk) elongate and clavate at apex, urogomphi wide and flattened, and inflated sensilla S-I. Larvae were studied by both optical and scanning electron microscopy, their morphological features are compared with those of other described Paussinae larvae, and their potential phylogenetic and functional significance are discussed.  相似文献   

18.
Kim  B.  Kim  K. W.  Choe  J. C. 《Insectes Sociaux》2012,59(2):263-268
We examined the foraging behavior of the Korean yellowjacket, Vespula koreensis, to determine whether this species displays temporal polyethism. Using video-recordings of the entrances of artificial nest boxes installed in the field, we investigated the association between the tasks performed by workers and age. We identified three foraging tasks (pulp, nectar and prey foraging). Pulp foraging was performed by younger foragers, while nectar and prey foraging were performed by older foragers. We measured the foraging time (time spent outside of the nest during a single foraging bout) and the weight of the materials that foragers brought into the nest for each task to estimate the cost of the task. Pulp foraging was less costly than nectar or prey foraging by both measures. Taken together, the results suggest that yellowjacket foragers tend to perform low-cost task in their early foraging days and high-cost task later. Our results add to a growing literature showing temporal polyethism in social insects.  相似文献   

19.
The social organization of several colonies of the ant Cataglyphis cursor with different compositions has been studied by means of individual marking of workers and later treatment of data with correspondence analysis. There are always three main poles or groups of tasks: inactivity, unspecific tasks in the nest and outside activities. From them, three groups of workers are separated: inactives, which stay immobile in the nest a great part of their time; interiors, which perform various tasks in the nest; and foragers, that are engaged in activities outside the nest. Several factors, such as the presence of the queen, the colony size or the season of the year influence the social structure of C. cursor colonies and originate important inter-, and intracolonial variations.  相似文献   

20.
Abstract. When exploring a chemically unmarked area devoid of food sources, workers of the pest ant Monomorium pharaonis L. (Formicidae, Myrmicinae) leave scent marks on the ground and after 30–60min a network of diverging exploratory trails begins to emerge.
Exploratory activity is affected by the nutritional state of the colony and a period of food deprivation induces a dramatic increase in the number of workers leaving the nest. A mathematical model based on a logistic growth equation is proposed to describe the exploratory recruitment observed. When travelling along exploratory trails the proportion of ants displaying trail-laying behaviour is higher for outbound than for nestbound workers. Outbound ants also show a greater propensity than nestbound ants to follow the scent marks of their nestmates. The chemical used to mark a novel area does not appear to be colony-specific and thus does not have a territorial function sensu stricto. The adaptive value of the collective exploratory behaviour observed in this study is discussed in relation to the common features of other pest ant species described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号