首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual selection has driven the evolution of exaggerated traits among diverse animal taxa. The production of exaggerated traits can come at a cost to other traits through trade-offs when resources allocated to trait development are limited. Alternatively some traits can be selected for in parallel to support or compensate for the cost of bearing the exaggerated trait. Male giraffe weevils (Lasiorhynchus barbicornis) display an extremely elongated rostrum used as a weapon during contests for mates. Here we characterise the scaling relationship between rostrum and body size and show that males have a steep positive allometry, but that the slope is non-linear due to a relative reduction in rostrum length for the largest males, suggesting a limitation in resource allocation or a diminishing requirement for large males to invest increasingly into larger rostra. We also measured testes, wings, antennae, fore- and hind-tibia size and found no evidence of a trade-off between these traits and rostrum length when comparing phenotypic correlations. However, the relative length of wings, antennae, fore- and hind-tibia all increased with relative rostrum length suggesting these traits may be under correlational selection. Increased investment in wing and leg length is therefore likely to compensate for the costs of flying with, and wielding the exaggerated rostrum of larger male giraffe weevils. These results provide a first step in identifying the potential for trait compensation and trades-offs, but are phenotypic correlations only and should be interpreted with care in the absence of breeding experiments.  相似文献   

2.
Laboratory and field measurements of the toxin content in Karenia brevis cells vary by >4‐fold. These differences have been largely attributed to genotypic variations in toxin production among strains. We hypothesized that nutrient limitation of growth rate is equally or more important in controlling the toxicity of K. brevis, as has been documented for other toxic algae. To test this hypothesis, we measured cellular growth rate, chlorophyll a, cellular carbon and nitrogen, cell volume, and brevetoxins in four strains of K. brevis grown in nutrient‐replete and nitrogen (N)‐limited semi‐continuous cultures. N‐limitation resulted in reductions of chlorophyll a, growth rate, volume per cell and nirtogen:carbon (N:C) ratios as well as a two‐fold increase (1%–4% to 5%–9%) in the percentage of cellular carbon present as brevetoxins. The increase in cellular brevetoxin concentrations was consistent among genetically distinct strains. Normalizing brevetoxins to cellular volume instead of per cell eliminated much of the commonly reported toxin variability among strains. These results suggest that genetically linked differences in cellular volume may affect the toxin content of K. brevis cells as much or more than innate genotypic differences in cellular toxin content per unit of biomass. Our data suggest at least some of the >4‐fold difference in toxicity per cell reported from field studies can be explained by limitation by nitrogen or other nutrients and by differences in cell size. The observed increase in brevetoxins in nitrogen limited cells is consistent with the carbon:nutrient balance hypothesis for increases in toxins and other plant defenses under nutrient limitation.  相似文献   

3.
Allocation trade-offs should be measured as opportunity costs, estimating what individuals sacrifice in one function by allocating to others. We investigated opportunity costs of male function in gynodioecious Phacelia linearis, asking whether nutrient limitation contributes to them. This hypothesis predicts that hermaphrodites experience greater nutrient stress than females, and that hermaphrodite disadvantages in production might decrease with nutrient supply. We cultivated hermaphrodites and females at two nutrient levels, scoring individuals for prereproductive leaf number at 5 wk, and biomass, nitrogen concentration, and fruit and seed production at 16 wk. Nutrient treatments caused final growth differences of two orders of magnitude. No gender difference appeared at 5 wk, but at 16 wk hermaphrodites produced less stem, leaf, and inflorescence biomass than females, and made fewer fruits. Hermaphrodites' shoot-size disadvantage was marginally significantly more severe at low nutrients than high nutrients. Significant gender x nutrient interactions for root fraction and whole-plant nitrogen concentration indicate greater nutrient stress in hermaphrodites than females. Hermaphrodites also acquired less total nitrogen than females. Nutrient limitation contributes to opportunity costs of male function, but there must be other contributors. Possibilities include limitations in other resources, gender effects on morphology, and genetic trade-offs not directly involving allocation or morphology.  相似文献   

4.
Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon‐ and nitrogen‐rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory, we show that nitrogen limitation causes a reduction in the cellular quota of nitrogen‐rich toxins, while phosphorus limitation causes an increase in the most nitrogen‐rich paralytic shellfish poisoning toxin. In addition, we show that the cellular content of nitrogen‐rich toxins increases with increasing cellular N : P ratios. Also consistent with theory, limitation by either nitrogen or phosphorus promotes the C‐rich toxin cell quota or toxicity of phytoplankton cells. These observed relationships may assist in predicting and managing toxin‐producing phytoplankton blooms. Such a stoichiometric regulation of toxins is likely not restricted to phytoplankton, and may well apply to carbon‐ and nitrogen‐rich secondary metabolites produced by bacteria, fungi and plants.  相似文献   

5.

Background and Aims

Plant functional traits are assumed to be adaptive. As selection acts on individuals and not on traits, interpreting the adaptive value of a trait not may be straightforward. For example, productive leaves are associated with fertile environments. However, it is not clear if productive leaves confer an advantage in these habitats, or if they are an advantage as part of a suite of coordinated traits.

Methods

Genotypes of Arabidopsis thaliana were grown in high and low nutrient treatments and low, neutral and high pH treatments. Nutrient availability is reduced in acidic or basic soils relative to neutral pH soils. pH treatments were used to alter the availability of resources rather than the amount of resources.

Key Results

Leaf function (specific leaf area, SLA) and life history (size at reproduction, age at reproduction) were variable across genotypes and were plastic. High nutrient availability induced higher SLA and larger size at reproduction. Genotypes that reproduced at large size in high nutrient conditions at neutral pH had the greatest fruit production. SLA was only indirectly related to fruit production through a causal relationship with rosette size; in high nutrient conditions, plants with high SLA were large at reproduction and had higher fruit production. In high nutrient and high pH treatments, plants were large at reproduction, but large size at reproduction was associated with low fecundity. This suggests that large size is adaptive under high nutrient availability.

Conclusions

Interpreting the adaptive value of functional traits will sometimes only be possible when these traits are considered as a suite of correlated and coordinated traits. Leaf functional traits may be important in defining adaptive strategies in A. thaliana but only through how they affect plant life history. Finally, manipulating soil pH can be a valuable tool in assessing adaptive plasticity on nutrient gradients.  相似文献   

6.
Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort plantain (Plantago lanceolata L.) using lines that had been artificially selected for high and low leaf IG concentrations for four generations. Twelve maternal half-sib families from each selection line were grown in four environments, consisting of two nutrient and two competition treatments. We tested whether: (1) in the absence of herbivores and pathogens, plants from lines selected for high IG levels have a lower fitness than plants selected for low IG levels; and (2) costs of chemical defense increase with environmental stress. Vegetative biomass did not differ between selection lines, but plants selected for high IG levels produced fewer inflorescences and had a significantly lower reproductive dry weight than plants selected for low IG levels, indicating a fitness cost of IG production. Line-by-nutrient and line-by-competition interactions were not significant for any of the fitness-related traits. Hence, there was no evidence that fitness costs increased with environmental stress. Two factors may have contributed to the absence of higher costs under environmental stress. First, IGs are carbon-based chemicals. Under nutrient limitation, the relative carbon excess may result in the production of IGs without imposing a further constraint on growth and reproduction. Second, correlated responses to selection on IG levels indicate the existence of a positive genetic association between IG level and cotyledon size. At low nutrient level, a path analysis based on family means revealed that in the presence of competitors, the negative direct effect of a high IG level on aboveground plant dry weight was partly offset by a positive direct effect of the associated larger cotyledon size. This indicates that fitness costs of defense may be modulated by environment-specific fitness effects of genetically associated traits.  相似文献   

7.
8.
Cell size is one of the ecologically most important traits of phytoplankton. The cell size variation is frequently related to temperature and nutrient limitation. In order to disentangle the role of both factors, an experiment was conducted to determine the possible interactions of these factors. Baltic Sea water containing the natural plankton community was used. We performed a factorial combined experiment of temperature, type of nutrient limitation (N vs. P), and strength of nutrient limitation. The type of nutrient limitation was manipulated by altering the N:P ratio of the medium (balanced, N and P limitation) and strength by the dilution rate (0% and 50%) of the semicontinuous cultures. The negative effect of temperature on cell size was strongest under N limitation, intermediate under P limitation, and weakest when N and P were supplied at balanced ratios. However, temperature also influenced the intensity of nutrient imitation, because at higher temperature there was a tendency for dissolved nutrient concentrations to be lower, while the C:N or C:P ratio being higher…higher at identical dilution rates and medium composition. Analyzing the response of cell size to C:N ratios (as index of N limitation) and C:P ratios (as index of P limitation) indicated a clear dominance of the nutrient effect over the direct temperature effect, although the temperature effect was also significant.  相似文献   

9.
Resistance and tolerance are different strategies of plants to deal with herbivore attack. Since resources are limited and resistance and tolerance serve similar functions for plants, trade-offs between these two strategies have often been postulated. In this study we investigated trade-offs between resistance and one aspect of tolerance, the ability to regrow after defoliation. In order to minimize confounding effects of genetic background and selection history, we used offspring derived from artificial selection lines of ribwort plantain (Plantago lanceolata) that differed in their levels of leaf iridoid glycosides (IGs), allelochemicals that confer resistance to generalist herbivores, to study genetic associations with regrowth ability. We tested whether high-IG plants (1) suffer allocation costs of resistance in terms of reduced shoot and root growth, (2) have reduced regrowth ability (tolerance) after defoliation compared to low-IG plants, and (3) whether such costs are more pronounced under nutrient stress. High-IG plants produced fewer inflorescences and side rosettes than low-IG plants and showed a different biomass allocation pattern, but since neither the vegetative, nor the reproductive biomass differed between the lines, there was no evidence for a cost of IG production in terms of total biomass production under either nutrient condition. High-IG plants also did not suffer a reduced capacity to regrow shoot mass after defoliation. However, after regrowth, root mass of high-IG plants grown under nutrient-poor conditions was significantly lower than that of low-IG plants. This suggests that under these conditions shoot regrowth of high-IG plants comes at a larger expense of root growth than in low-IG plants. We speculate therefore that if there is repeated defoliation, high-IG plants may eventually fail to maintain shoot regrowth capacity and that trade-offs between resistance and tolerance in this system will show up after repeated defoliation events under conditions of low resource availability.  相似文献   

10.
Theory predicts that plant defensive traits are costly due to trade-offs between allocation to defense and growth and reproduction. Most previous studies of costs of plant defense focused on female fitness costs of constitutively expressed defenses. Consideration of alternative plant strategies, such as induced defenses and tolerance to herbivory, and multiple types of costs, including allocation to male reproductive function, may increase our ability to detect costs of plant defense against herbivores. In this study we measured male and female reproductive costs associated with induced responses and tolerance to herbivory in annual wild radish plants (Raphanus raphanistrum). We induced resistance in the plants by subjecting them to herbivory by Pieris rapae caterpillars. We also induced resistance in plants without leaf tissue removal using a natural chemical elicitor, jasmonic acid; in addition, we removed leaf tissue without inducing plant responses using manual clipping. Induced responses included increased concentrations of indole glucosinolates, which are putative defense compounds. Induced responses, in the absence of leaf tissue removal, reduced plant fitness when five fitness components were considered together; costs of induction were individually detected for time to first flower and number of pollen grains produced per flower. In this system, induced responses appear to impose a cost, although this cost may not have been detected had we only quantified the traditionally measured fitness components, growth and seed production. In the absence of induced responses, 50% leaf tissue removal, reduced plant fitness in three out of the five fitness components measured. Induced responses to herbivory and leaf tissue removal had additive effects on plant fitness. Although plant sibships varied greatly (49–136%) in their level of tolerance to herbivory, costs of tolerance were not detected, as we did not find a negative association between the ability to compensate for damage and plant fitness in the absence of damage. We suggest that consideration of alternative plant defense strategies and multiple costs will result in a broader understanding of the evolutionary ecology of plant defense.  相似文献   

11.
Toxins produced as secondary metabolites can play important roles in phytoplankton communities and contribute to the ecological success of harmful algal bloom (HAB) taxa. Toxin composition and content in phytoplankton are affected by a suite of environmental factors, including nutrient availability. Changes in nutrient availability can increase or decrease toxin content and alter toxin composition, depending on toxin stoichiometry and the mechanisms by which nutrient limitation affects toxin production. The studies that have assessed the effects of nutrient availability on brevetoxin content of the HAB species Karenia brevis have reported contradictory results, although there is growing support that nutrient limitation increases brevetoxin content. In this study, we assessed the effects of decreased nitrogen (N) and phosphorus (P) availability on brevetoxin content and composition of K. brevis grown in chemostats at steady state by altering the nutrient supply ratios of incoming media from the Redfield Ratio. Overall, brevetoxin content was greatest in cultures grown at the lowest rate, regardless of the nutrient supply ratio (i.e., under both Redfield and N-limiting supply ratios). Compared to cultures grown at 0.2 d−1, cultures grown at 0.1 d−1 exhibited 5-fold increases in intracellular toxin content. In contrast, at constant growth rates, N-limiting supply ratios decreased intracellular brevetoxin content by approximately one-third, although this result was significant only in cultures growing at the fastest rate of 0.23 d−1. P-limiting supply ratios had no effect on brevetoxin content or composition. In addition, when cultures grown at rates of 0.2 d−1 were supplied with balanced/Redfield N:P supply ratios, but different absolute nutrient concentrations, toxin content was greater under greater nutrient concentrations. These findings suggest that when growth rate is not nutrient limited, there is a positive relationship between nutrient availability and brevetoxin content. This work contributes to previous studies by demonstrating strong growth rates effects on brevetoxin content and that growth rate and nutrient availability can independently or together affect toxin content of K. brevis. Moreover, our work underscores the value of the chemostat as a tool to elucidate the mechanisms by which nutrient availability and growth rate affect toxin production and content of HAB species.  相似文献   

12.
Harmful algal blooms that disrupt and degrade ecosystems (ecosystem disruptive algal blooms, EDABs) are occurring with greater frequency and severity with eutrophication and other adverse anthropogenic alterations of coastal systems. EDAB events have been hypothesized to be caused by positive feedback interactions involving differential growth of competing algal species, low grazing mortality rates on EDAB species, and resulting decreases in nutrient inputs from grazer-mediated nutrient cycling as the EDAB event progresses. Here we develop a stoichiometric nutrient–phytoplankton–zooplankton (NPZ) model to test a conceptual positive feedback mechanism linked to increased cell toxicity and resultant decreases in grazing mortality rates in EDAB species under nutrient limitation of growth rate. As our model EDAB alga, we chose the slow-growing, toxic dinoflagellate Karenia brevis, whose toxin levels have been shown to increase with nutrient (nitrogen) limitation of specific growth rate. This species was competed with two high-nutrient adapted, faster-growing diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) using recently published data for relationships among nutrient (ammonium) concentration, carbon normalized ammonium uptake rates, cellular nitrogen:carbon (N:C) ratios, and specific growth rate. The model results support the proposed positive feedback mechanism for EDAB formation and toxicity. In all cases the toxic bloom was preceded by one or more pre-blooms of fast-growing diatoms, which drew dissolved nutrients to low growth rate-limiting levels, and stimulated the population growth of zooplankton grazers. Low specific grazing rates on the toxic, nutrient-limited EDAB species then promoted the population growth of this species, which further decreased grazing rates, grazing-linked nutrient recycling, nutrient concentrations, and algal specific growth rates. The nutrient limitation of growth rate further increased toxin concentrations in the EDAB algae, which further decreased grazing-linked nutrient recycling rates and nutrient concentrations, and caused an even greater nutrient limitation of growth rate and even higher toxin levels in the EDAB algae. This chain of interactions represented a positive feedback that resulted in the formation of a high-biomass toxic bloom, with low, nutrient-limited specific growth rates and associated high cellular C:N and toxin:C ratios. Together the elevated C:N and toxin:C ratios in the EDAB algae resulted in very high bloom toxicity. The positive feedbacks and resulting bloom formation and toxicity were increased by long water residence times, which increased the relative importance of grazing-linked nutrient recycling to the overall supply of limiting nutrient (N).  相似文献   

13.
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that ‘silver spoon'' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.  相似文献   

14.
Plant resistance and tolerance to herbivores, parasites, pathogens, and abiotic factors may involve two types of costs. First, resistance and tolerance may be costly in terms of plant fitness. Second, resistance and tolerance to multiple enemies may involve ecological trade-offs. Our study species, the stinging nettle ( Urtica dioica L.) has significant variation among seed families in resistance and tolerance as well as costs of resistance and tolerance to the holoparasitic plant Cuscuta europaea L. Here we report on variation among seed families (i.e. genetic) in tolerance to nutrient limitation and in resistance to both mammalian herbivores (i.e. number of stinging trichomes) and an invertebrate herbivore (i.e. inverse of the performance of a generalist snail, Arianta arbustorum). Our results indicate direct fitness costs of snail resistance in terms of host reproduction whereas we did not detect fitness costs of mammalian resistance or tolerance to nutrient limitation. We further tested for ecological trade-offs among tolerance or resistance to the parasitic plant, herbivore resistance, and tolerance to nutrient limitation in the stinging nettle. Tolerance of nettles to nutrient limitation and resistance to mammalian herbivores tended to correlate negatively. However, there were no significant correlations among resistance and tolerance to the different natural enemies (i.e. parasitic plants, snails, and mammals). The results of this greenhouse study thus suggest that resistance and tolerance of nettles to diverse enemies are free to evolve independently of each other but not completely without direct costs in terms of plant fitness.  相似文献   

15.
Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.  相似文献   

16.
Evolutionary trade-offs among ecological traits are one mechanism that could determine the responses of functional groups of decomposers to global changes such as nitrogen (N) enrichment. We hypothesised that bacteria targeting recalcitrant carbon compounds require relatively high levels of N availability to support the construction costs of requisite extracellular and transport enzymes. Indeed, we found that taxa that used more recalcitrant (i.e. larger and cyclic) carbon compounds were more prevalent in ocean waters with higher nitrate concentrations. Compared to recalcitrant carbon users, labile carbon users targeted more organic N compounds, were found in relatively nitrate-poor waters, and were more common in higher latitude soils, which is consistent with the paradigm that N-limitation is stronger at higher latitudes. Altogether, evolutionary trade-offs may limit recalcitrant carbon users to habitats with higher N availability.  相似文献   

17.
Recent studies suggest that physiological traits can be affected by tree size due to stronger hydraulic limitation in taller trees. As trees vary greatly in size, both within and among species, the adaptive responses to hydraulic limitation may be different among species with different maximum sizes. To investigate this, we explored size-dependency in photosynthetic and hydraulic parameters of three Acer species (Acer mono Maxim., Acer amoenum Carr and Acer japonicum Thunb.) using trees of various sizes under well-lit conditions. Leaf stomatal conductance of the Acer species decreased with tree size, implying that water supply to leaves decreases as trees grow. In contrast, content of nitrogen increased with tree size, which may compensate for the decrease in stomatal conductance to maintain the photosynthetic rate. Although the increase in nitrogen and leaf mass per area were larger in species with larger statures, the size-dependency in stomatal conductance was not different among species, and photosynthetic rate and hydraulic conductance were maintained in the three Acer species. Therefore, we suggest that hydraulic limitation on gas exchange does not necessarily depend on the maximum height of the species and that maintenance of photosynthesis and hydraulic properties is a fundamental physiological process during tree growth.  相似文献   

18.
We used jasmonic acid to induce first-year plants of Alliaria petiolata, a European invader that largely escapes herbivory in North America, to examine continental, population, and environmental variation in the expression and costs of induced defense traits. While absolute levels varied among populations, the induction of trypsin inhibitor activity was strong and largely uniform across five native and seven invasive populations. Trichome densities varied across populations, were absent in two of them, and only tended to be inducible by jasmonic acid. Jasmonate induction was substantially costly to leaf growth and dry biomass production, the magnitude of which varied little among populations. Continental origin of the populations explained an insignificant amount of variation in any trait. Trypsin inhibitor activity was strongly inducible across a nutrient gradient, but induction was more costly to leaf growth at low soil nutrient levels. Our results show that A. petiolata displays defense traits that are strongly inducible by jasmonic acid across populations, that jasmonate induction is substantially costly to growth with little variation among populations, and that costs of induction increase with decreased soil nutrient availability. Escaping the need to express induced defense traits and their costs in the face of reduced herbivory in introduced habitats may benefit fitness of invasive plants even in the absence of any evolutionary change in resistance in these plants.  相似文献   

19.
Compared to ancestral wild jungle fowl, domestic broiler chickens have been consciously selected for large body size, relatively large pectoral muscles, rapid growth, and high feed efficiency. Hence intraspecific comparisons of these two strains could help identify consequences of unconscious artificial selection, trade-offs in energy allocation, and factors limiting energy budgets. We therefore compared our measurements of many corresponding parameters in both strains: growth rate, energy intake, digestive efficiency, metabolic rate and its components, organ masses, and intestinal brush-border nutrient transporter and hydrolase activities and capacities, as functions of age and body mass in zero- to nine-week-old chicks. Both strains prove to have the same digestive efficiency. Compared to equal-sized jungle fowl, broilers have higher daily energy intake and activity costs. Broilers have relatively longer and wider, hence heavier, small intestines, and their other gut compartments are also relatively larger. Offsetting these increases, broilers have relatively smaller brains and leg bones, these being much less important to a captive bird than to a wild bird exposed to predators. Broilers have generally lower intestinal transporter activities, but relatively higher transporter capacities because of their larger guts. Among domestic chicken strains, comparison of broilers with layers, the former having been consciously selected for much higher growth rates, yields generally similar conclusions. Thus, as recognized in broad outline by Darwin, domestication provides clear examples of conscious selection, of unconscious selection for traits prerequisite to the consciously selected traits, and of unconscious selection against traits rendered less important or competing for space or energy.  相似文献   

20.
Costs of plant defense are a key assumption in evolutionary ecology, yet their detection has remained challenging. Here we introduce a novel method for quantifying plant growth using the common milkweed Asclepias syriaca and repeated non‐destructive size measurements to experimentally test for costs of defensive traits. We estimated mechanistic components of plant growth (relative growth rate, net assimilation rate, specific leaf area and leaf‐mass ratio) at two levels of fertilization (high and low), and related them to production of toxic cardenolides and exudation of sticky latex. We found negative genetic correlations between cardenolides and growth (most strongly with net assimilation rate) at both nutrient levels. Additionally, plants varied in their cardenolide response to low nutrients, and genetic families maintaining higher cardenolide production at low nutrient availability suffered proportionally larger reductions in growth. In contrast, the amount of latex was positively correlated with plant growth. Because latex is instantly deployed from a plant‐wide system of pressurized laticifers, larger plants may simply exude proportionally more latex when damaged and thus plant size is likely to mask potential costs of latex synthesis. Unbiased quantification of mechanistic growth processes, coupled with the manipulation of nutrient or stress levels, is thus an effective approach to demonstrate allocation to defense and tradeoffs with growth, especially in long‐lived plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号