首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated a specific enzymatic biosensor for detecting target pollutant 3,5-dinitro-trifluoromethylbenzene (3,5-DNBTF). The predicted enzyme is a nitroreductase that catalyzes the total nitroreduction of 3,5-DNBTF to its corresponding diamine. The photo-activation of this diamine offers a large panel of detection tools. After broad screening of microorganisms, only the strains belonging to the genus Bacillus were able to reduce the two nitro groups of 3,5-DNBTF. Among them, Bacillus LMA, isolated from explosives-polluted effluents, was the most efficient in reducing this compound. The involved nitroreductase was identified by 2D gel electrophoresis coupled to mass spectrometry, as the Bacillus subtilis oxygen-insensitive nitroreductase NfrA. The enzyme was purified by mono-P chromatofocusing.  相似文献   

2.
Among photosynthetic bacteria, strains B10 and E1F1 of Rhodobacter capsulatus photoreduce 2,4-dinitrophenol (DNP), which is stoichiometrically converted into 2-amino-4-nitrophenol by a nitroreductase activity. The reduction of DNP is inhibited in vivo by ammonium, which probably acts at the level of the DNP transport system and/or physiological electron transport to the nitroreductase, since this enzyme is not inhibited by ammonium in vitro. Using the complete genome sequence data for strain SB1003 of R. capsulatus, two putative genes coding for possible nitroreductases were isolated from R. capsulatus B10 and disrupted. The phenotypes of these mutant strains revealed that both genes are involved in the reduction of DNP and code for two major nitroreductases, NprA and NprB. Both enzymes use NAD(P)H as the main physiological electron donor. The nitroreductase NprA is under ammonium control, whereas the nitroreductase NprB is not. In addition, the expression of the nprB gene seems to be constitutive, whereas nprA gene expression is inducible by a wide range of nitroaromatic and heterocyclic compounds, including several dinitroaromatics, nitrofuran derivatives, CB1954, 2-aminofluorene, benzo[a]pyrene, salicylic acid, and paraquat. The identification of two putative mar/sox boxes in the possible promoter region of the nprA gene and the induction of nprA gene expression by salicylic acid and 2,4-dinitrophenol suggest a role in the control of the nprA gene for the two-component MarRA regulatory system, which in Escherichia coli controls the response to some antibiotics and environmental contaminants. In addition, upregulation of the nprA gene by paraquat indicates that this gene is probably a member of the SoxRS regulon, which is involved in the response to stress conditions in other bacteria.  相似文献   

3.
NfrA1 nitroreductase from the Gram-positive bacterium Bacillus subtilis is a member of the NAD(P)H/FMN oxidoreductase family. Here, we investigated the reactivity, the structure and kinetics of NfrA1, which could provide insight into the unclear biological role of this enzyme. We could show that NfrA1 possesses an NADH oxidase activity that leads to high concentrations of oxygen peroxide and an NAD+ degrading activity leading to free nicotinamide. Finally, we showed that NfrA1 is able to rapidly scavenge H2O2 produced during the oxidative process or added exogenously.

Structured summary

MINT-7990140: nfrA1 (uniprotkb:P39605) and nfrA1 (uniprotkb:P39605) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

4.
The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H ?1H COSY, 1H ?13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.  相似文献   

5.
Acetyltransferase and nitroreductase are enzymes involved in the intracellular metabolic activation of nitroarenes and/or aromatic amines in Salmonella typhimurium. The plasmid carrying both the acetyltransferase and nitroreductase genes was introduced into S. typhimurium TA98 and TA100. The resulting strains, YG1041 and YG1042, respectively, showed high levels of both enzyme activities and were more sensitive to the mutagenic action of some nitro-aromatic compounds such as 2-nitrofluorene, 1-nitropyrene and p-nitrophenetole than did the sensitive strains previously established in this laboratory or the conventional strains. These results indicate that the new strains permit the very efficient detection of the mutagenicity of nitroarenes in the environment.  相似文献   

6.
Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene.  相似文献   

7.
Quinones can function as redox mediators in the unspecific anaerobic reduction of azo compounds by various bacterial species. These quinones are enzymatically reduced by the bacteria and the resulting hydroquinones then reduce in a purely chemical redox reaction the azo compounds outside of the cells. Recently, it has been demonstrated that the addition of lawsone (2-hydroxy-1,4-naphthoquinone) to anaerobically incubated cells of Escherichia coli resulted in a pronounced increase in the reduction rates of different sulfonated and polymeric azo compounds. In the present study it was attempted to identify the enzyme system(s) responsible for the reduction of lawsone by E. coli and thus for the lawsone-dependent anaerobic azo reductase activity. An NADH-dependent lawsone reductase activity was found in the cytosolic fraction of the cells. The enzyme was purified by column chromatography and the amino-terminal amino acid sequence of the protein was determined. The sequence obtained was identical to the sequence of an oxygen-insensitive nitroreductase (NfsB) described earlier from this organism. Subsequent biochemical tests with the purified lawsone reductase activity confirmed that the lawsone reductase activity detected was identical with NfsB. In addition it was proven that also a second oxygen-insensitive nitroreductase of E. coli (NfsA) is able to reduce lawsone and thus to function under adequate conditions as quinone-dependent azo reductase.  相似文献   

8.
A purified preparation of Bacillus licheniformis α-amylase was immunologeeally and electrophoretically compared with commercial crystalline α-amylase of Bacillus subtilis. The former enzyme reacted completely with rabbit antiserum to the same enzyme showing a single precipitin band, and moved toward the cathode in immuno-electrophoresis on agarose at pH 9.6. On the contrary, crystalline α-amylase of Bacillus subtilis migrated to the anode in immunoelectrophoresis at pH 8.6, though it weakly cross-reacted with the antiserum, suggesting that amylases of Bacillus licheniformis and Bacillus subtilis are not identical. In addition, the neutralization test of amylase activity showed that α-amylase of Bacillus licheniformis was much more susceptible to inhibition by the serum than was Bacillus subtilis α-amylase. Each of four species of Bacillus licheniformis α-amylase extracted from the sliced discs after disc electrophoresis on polyacrylamide gel was distinct from the others by showing individual migratory rate, but they were antigenically similar to each other and to the parent enzyme.  相似文献   

9.
A NADH-dependent nitroreductase from an efficient nitro-reducing soil bacterium, Streptomyces mirabilis DUT001, was isolated and characterized. The enzyme was purified to near homogeneity using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration chromatography. The native enzyme was estimated by gel filtration to have a molecular weight of 68 kDa, and its subunit molecular weight determined by SDS-PAGE was about 34 kDa, which indicated this enzyme was a dimer. Polycyclic nitroaromatic compounds were preferred substrates for this enzyme. The purified enzyme exhibited maximum activity at pH 7.5 and 40 °C. The addition of various chemicals such as reducing agents, metal ions, and chelating agents, had effects on enzyme activity. Mg2+, Ca2+, Sr2+, and 1% (w/v) Triton X-100 increased activity. However, Hg2+, Co2+, Ni2+, Cu2+, and SDS reduced activity. The maximum reaction rate (Vmax) was 64 μM min?1 mg?1 enzyme and the apparent Michaelis–Menten constants (Km) for 4-nitro-1,8-naphthalic anhydride and NADH were 276 and 29 μM, respectively. Menadione, bimethylenebis, sodium benzoate, and antimycin A were inhibitors of the purified nitroreductase with apparent inhibition constants (Kis) of 20, 36, 44 and 80 μM, respectively.  相似文献   

10.
Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate–binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.  相似文献   

11.
Antiserum specific for diamine oxidase (DAO;EC 1.4.3.6) from Lens culinaris cross-reacted with DAO from several other members of the Leguminosae when tested by agar double diffusion. Antibodies purified by affinity chromatography were used to make an immunoadsorbent for the one-step purification of DAO from various species of the Leguminosae. This technique has made it possible to purify in one step the already characterized DAO from pea and lentil, and the unknown diamine oxidase from Cicer arietinum. This enzyme was partially characterized; it showed a pH optimum of 7.5 with putrescine as substrate and followed typical Michaelis-Menten kinetics with a Km of 2.4 × 10?4 M. Copper ligands and carbonyl group-directed reagents inhibited the enzyme.  相似文献   

12.
Two new 3,5-dimethylpyrazolic derived ligands that are N1-substituted by diamine chains, 1-[2-(diethylamino)ethyl]-3,5-dimethylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-dimethylpyrazole (L2) were synthesised. Reaction of the ligands, L1 and L2, with [MCl2(CH3CN)2] yielded [MCl2(L)] (M = Pd(II), Pt(II)) complexes. These complexes were characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 195Pt{1H} NMR spectroscopies. The crystal structure of [PdCl2(L1)] was determined by single-crystal X-ray diffraction methods. The structure consists of mononuclear units. The Pd(II) atom is coordinated by a pyrazolic nitrogen, an amine nitrogen and two chlorine atoms in a cis disposition. In this structure, C-H?Cl, C-H?H-C and C-H?C-H intermolecular interactions have been identified.  相似文献   

13.
Co-metabolism of 3-methylcatechol, 4-chlorocatechol and 3,5-dichlorocatechol by an Achromobacter sp. was shown to result in the accumulation of 2-hydroxy-3-methylmuconic semialdehyde, 4-chloro-2-hydroxymuconic semialdehyde and 3,5-dichloro-2-hydroxymuconic semialdehyde respectively. Formation of these products indicated that cleavage of the aromatic nucleus of the substituted catechols was accomplished by a new meta-cleaving enzyme, catechol 1,6-oxygenase. This enzyme was equally active on both chloro- and methyl-substituted catechols.  相似文献   

14.
A kinetic comparison between three nitroreductase enzymes isolated from the genome of Bacillus licheniformis ATCC 14580 for prospective use as immobilised enzymes for explosives detection has been conducted. The genes encoding the three enzymes (yfkO [BLNfnB] encoding an NfsB-like enzyme; nfrA [BLNfrA1] and ycnD [BLNfrA2] encoding PnrA-like enzymes) have been PCR amplified from the native genome and cloned into pET-28a(+) and a modified cysteine(6)-tagged pET-28a(+) and subsequently over-expressed, purified, and biochemically characterised. The previously uncharacterised nitroreductases exhibited activity against a wide range of explosives, including cyclic nitramines. Amino acid alignments and overall structural comparisons with other nitroreductase family members suggest that the B. licheniformis enzymes are members of the NfsA-Frp/NfsB-FRase I family group. Despite the overall low amino acid identity, regions for flavin mononucleotide binding and active site residues were highly conserved.  相似文献   

15.
A competitive radioimmunoassay for the quantitation of diamine oxidase (EC 1.4.3.6) from Lens culinaris is reported. Specific antibodies raised in rabbits immunized with a homogeneous preparation of the enzyme were incubated with purified 125I-enzyme and with either unlabeled diamine oxidase or plant material. Antigen-antibody complexes were isolated from the mixture by incubation with Staphylococcus protein A. The sensitivity of the test was about 5 nanograms in terms of enzyme protein. This assay was applied to the determination of the enzyme in extracts from lentil shoots grown either in the dark or in the light. Diamine oxidase activity and enzyme protein (as determined by radioimmunoassay) were measured during 7 days after germination. Both enzymic activity and enzyme protein declined slowly in the dark and rapidly in the light. These results indicate that fluctuation of the enzymic activity in this organ, both in the light and in the dark, are mediated via changes in the amount of the enzyme protein and not via the action of an inhibitor.  相似文献   

16.
17.
A cephalosporin deacetylating acetyl xylan esterase was cloned from the genomic DNA of Bacillus subtilis CICC 20034 and functionally expressed in Escherichia coli. Its gene contained an open reading frame of 957 bp encoding 318 amino acids with a calculated mass of 35,607 Da, and it displayed significant identity to acetyl xylan esterases from Bacillus sp. 916, B. subtilis 168, and Bacillus pumilus Cect5072. The enzyme was a native homohexamer but a trimer under the condition of 1 % sodium dodecyl sulfate (SDS); both forms were active and could transit to each other by incubating in or removing SDS. The enzyme belongs to carbohydrate esterase family 7 and had a double specificity on both the acetylated oligosaccharide and cephalosporin C (CPC) and 7-aminocephalosporanic acid (7-ACA). The activity of this purified enzyme toward CPC and 7-ACA was highest among all the acetyl xylan esterase from CE family 7, which were 484 and 888 U/mg, respectively, and endowed itself with great industrial interest on semi-synthetic β-lactam antibiotics. The optimum pH of the purified enzyme was 8.0, and the optimum temperature was 50 °C, and the enzyme had high thermal stability, broad range of pH tolerance, and extremely organic solvent tolerance.  相似文献   

18.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

19.
Two thermostable enzymes synthesized by thermophilic microorganisms were isolated and purified. A thermostable ß-galactosidase was produced in a continuous fermentation process by Bacillus stearothermophilus TP 32 as an intracellular enzyme. After applying different concentration procedures the raw extract enzyme was prepurified on a Sephadex G-200 size exclusion column. The isolated ß-galactosidase fraction was then separated with HPLC on a TSK G 3000 SW size exclusion column to determine the molecular mass based on calibration curves of standard proteins. The other enzyme, a thermostable protease, was synthesized by Bacillus stearothermophilus TP 26 as an extracellular enzyme. After its concentration, the enzyme was purified on a classical size exclusion column (Sephacryl S-200) and on a HPLC size exclusion column (BIO-SIL TSK-250). The micropreparatively isolated fraction was separated again on this HPLC column to determine its molecular mass. The optimum temperature of both enzymes was approximately 75°C.  相似文献   

20.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80°C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号