首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2007,42(8):1237-1243
The pectinolytic enzyme obtained from Penicillium viridicatum RFC by solid-state fermentation was purified to homogeneity by pretreatment with kaolin (40 mg mL−1) and ultrafiltration, followed by chromatography on a Sephadex G50 column. The apparent molecular weight of the enzyme was 24 kDa. Maximal activity occurred at pH 6.0 and at 60 °C. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of highly esterified pectin. The presence of 10 mM Ba2+ increased the enzyme activity by 96% and its thermal stability by 30%, besides increasing its stability at acid pH. The apparent Km with apple pectin as substrate was 1.82 mg mL−1 and the Vmax was 81 μmol min−1 mg−1.  相似文献   

2.
A gene encoding acidic, thermostable and raw starch hydrolysing α-amylase was cloned from an extreme thermophile Geobacillus thermoleovorans and expressed. The ORF of 1650 bp encodes a 515 amino acid protein (Gt-amy) with a signal peptide of 34 amino acids at the N-terminus. Seven conserved sequences of GH-13 family have been found in its sequence. The specific enzyme activity of recombinant Gt-amy is 1723 U mg−1 protein with a molecular mass of 59 kDa. It is optimally active at pH 5.0 and 80 °C with t1/2 values of 283, 184 and 56 min at 70, 80 and 90 °C, respectively. The activation energy required for its temperature deactivation is 84.96 kJ mol−1. Ca2+ strongly inhibits Gt-amy at 10 mM concentration, and inhibition kinetics with Ca2+ reveals that inhibition occurs as a result of binding to a lower affinity secondary Ca2+ binding site in the active centre in a mixed-type inhibition manner. The Km and kcat of the Gt-amy are 0.315 mg mL−1 and 2.62 × 103 s−1, respectively. Gt-amy is Ca2+-independent at the concentration used in industrial starch saccharification, and hydrolyses raw corn and wheat starches efficiently, and thus, is applicable in starch saccharification at the industrial sub-gelatinization temperatures.  相似文献   

3.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

4.
《Process Biochemistry》2014,49(9):1440-1447
Functional expression of a thermostable phytase from A. niger was achieved in Kluyveromyces lactis GG799 cells. Effective secretion of recombinant enzyme (198 U ml−1) in the fermentation broth at 72 h incubation at 22 °C was obtained. Purified enzyme showed a specific activity of 72 U mg−1) and was detected on SDS-PAGE as a heavily glycosylated protein with a molecular weight of ≥140 kDa. Optimum temperature of the enzyme was at 55 °C and it showed a characteristic bi-hump pH profile with two pH optima (at pH 2.5 and 5.5). Enzyme showed considerable pepsin resistance with 60% activity retention after incubation with pepsin at the ratio of 1:1000. Enzyme was thermostable retaining 69 and 37% activity at 90 and 100 °C for 10 min respectively and remained active at these temperatures till 1 h. Deglycosylation studies demonstrated negligible effect of N-linked glycans on thermal properties. Multiple sequence alignment data revealed a conserved Asn at position 345 of this phytase which might contribute to its thermal properties. This thermostable phytase coupled with its noticeable protease resistance could be a better alternative to current commercial phytases.  相似文献   

5.
Leifsonia xyli HS0904 can stereoselectively catalyze the bioreduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to its corresponding alcohol, which is a valuable chiral intermediate in the pharmaceuticals. In this study, a new carbonyl reductase derived from L. xyli HS0904 was purified and its biochemical properties were determined in detail. The carbonyl reductase was purified by 530-fold with a specific activity of 13.2 U mg−1 and found to be a homodimer with a molecular mass of 49 kDa, in which the subunit molecular-weight was about 24 kDa. The purified enzyme exhibited a maximum enzyme activity at 34 °C and pH 7.2, and retained over 90% of its initial activity at 4 °C and pH 7.0 for 24 h. The addition of various additives, such as Ca2+, Mg2+, Mn2+, l-cysteine, l-glutathione, urea, PEG 1000 and PEG 4000, could enhance the enzyme activity. The maximal reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) of the purified carbonyl reductase for BTAP and NADH were confirmed as 33.9 U mg−1, 0.383 mM and 69.9 U mg−1, 0.412 mM, respectively. Furthermore, this enzyme was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters.  相似文献   

6.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

7.
《Process Biochemistry》2010,45(1):88-93
A fibrinolytic protease (FP84) was purified from Streptomyces sp. CS684, with the aim of isolating economically viable enzyme from a microbial source. SDS-PAGE and fibrin zymography of the purified enzyme showed a single protein band of approximately 35 kDa. Maximal activity was at 45 °C and pH 7–8, and the enzyme was stable between pH 6 and 9 and below 40 °C. It exhibited fibrinolytic activity, which is stronger than that of plasmin. FP84 hydrolyzed Bβ-chains of fibrinogen, but did not cleave Aα- and γ-chains. Km, Vmax and Kcat values for azocasein were 4.2 mg ml−1, 305.8 μg min−1 mg−1 and 188.7 s−1, respectively. The activity was suppressed by Co2+, Zn2+, Cu2+ and Fe2+, but slightly enhanced by Ca2+ and Mg+2. Additionally, the activity was slightly inhibited by aprotinin and PMSF, but significantly inhibited by pefabloc, EDTA and EGTA. The first 15 amino acids of N-terminal sequence were GTQENPPSSGLDDID. They are highly similar to those of serine proteases from various Streptomyces strains, but different with known fibrinolytic enzymes. These results suggest that FP84 is a novel serine metalloprotease with potential application in thrombolytic therapy.  相似文献   

8.
《Process Biochemistry》2007,42(1):83-88
The piceid-β-d-glucosidase that hydrolyzes the β-d-glucopyranoside bond of piceid to release resveratrol was isolated from Aspergillus oryzae sp.100 strain, and the enzyme was purified and characterized. The enzyme was purified to one spot in SDS polyacrylamide gel electrophoresis, and its molecular weight was about 77 kDa. The optimum temperature of the piceid-β-d-glucosidase was 60 °C, and the optimum pH was 5.0. The piceid-β-d-glucosidase was stable at less than 60 °C, and pH 4.0–5.0. Ca2+, Mg2+ and Zn2+ ions have no significant effect on enzyme activity, but Cu2+ ion inhibits enzyme activity strongly. The Km value was 0.74 mM and the Vmax value was 323 nkat mg−1 for piceid.  相似文献   

9.
Microbial electrolysis cells (MECs) with autotrophic biocathode are a promising technology for removal of pollutants in wastewater. The aim of this study was to investigate the effect of initial acidity of wastewater on performance of sulfate-reducing biocathodes. MECs with biocathodes were operated with initial pH values of catholyte ranged from 3.0 to 7.0. The optimum initial pH value was 6.0 with a maximum sulfate reductive rate and biomass of 57 mg L−1 d−1 and 2.1 ± 0.4 mg g−1, respectively. With initial pH 7.0, the pH value of catholyte increased to 9.8 ± 0.2 after an operation cycle, which resulted in low performance of the biocathode. A considerable sulfate reductive rate of 31 ± 0.85 mg L−1 d−1 was achieved with initial pH 3.0. Desulfovibrio sp. grew dominantly with abundance of 46%–66% in the cathode biofilm with initial pH values from 3.0 to 6.0 and contributed to the sulfate reduction. Clostridium and Parapedobacter also had high abundance in pH 6.0 cathode, indicated that interspecies electron transfer between electrochemical active and sulfate-reducing bacteria could play an important role in sulfate removal. The results suggest that acidity of catholyte is an important factor to be considered to utilize autotrophic biocathode MECs for wastewater treatment.  相似文献   

10.
《Process Biochemistry》2014,49(3):445-450
A cyanide hydratase from Aspergillus niger K10 was expressed in Escherichia coli and purified. Apart from HCN, it transformed some nitriles, preferentially 2-cyanopyridine and fumaronitrile. Vmax and Km for HCN were ca. 6.8 mmol min−1 mg−1 protein and 109 mM, respectively. Vmax for fumaronitrile and 2-cyanopyridine was two to three orders of magnitude lower than for HCN (ca. 18.8 and 10.3 μmol min−1 mg−1, respectively) but Km was also lower (ca. 14.7 and 3.7 mM, respectively). Both cyanide hydratase and nitrilase activities were abolished in truncated enzyme variants missing 18–34 C-terminal aa residues. The enzyme exhibited the highest activity at 45 °C and pH 8–9; it was unstable at over 35 °C and at below pH 5.5. The operational stability of the whole-cell catalyst was examined in continuous stirred membrane reactors with 70-mL working volume. The catalyst exhibited a half-life of 5.6 h at 28 °C. A reactor loaded with an excess of the catalyst was used to degrade 25 mM KCN. A conversion rate of over 80% was maintained for 3 days.  相似文献   

11.
A newly isolated Rhodococcus sp. LKE-028 (MTCC 5562) from soil samples of Gangotri region of Uttarakhand Himalayan produced a thermostable esterase. The enzyme was purified to homogeneity with purification fold 62.8 and specific activity 861.2 U mg?1 proteins along with 26.7% recovery. Molecular mass of the purified enzyme was 38 kDa and values of Km and Vmax were 525 nM and 1666.7 U mg?1 proteins, respectively. The esterase was active over a broad range of temperature (40–100 °C) and pH (7.0–12.0). The esterase was most active at pH 11.0. The optimum temperature of enzyme activity was 70 °C and the enzyme was completely stable after 3 h pre-incubation at 60 °C. Metal ions like Ca2+, Mg2+ and Co2+ stimulated enzyme activities. Purified esterase remarkably retained its activity with 10 M NaCl. Enzyme activity was slightly increased in presence of non-polar detergents (Tween 20, Tween 80 and Triton X 100), and compatible with oxidizing agents (H2O2) and reducing agents (β-mercaptoethanol). Activities of the enzyme was stimulated in presence of organic solvents like DMSO, benzene, toluene, methanol, ethyl alcohol, acetone, isoamyl alcohol after 10 days long incubation. The enzyme retained over 75% activity in presence of proteinase K. Besides hyperthermostability and halotolerancy the novelty of this enzyme is its resistance against protease.  相似文献   

12.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

13.
《Process Biochemistry》2004,39(11):1599-1605
Fusarium oxysporum F3 produced N-acetyl-β-d-glucosaminidase when grown on wheat bran and chitin as carbon sources in solid-state fermentation. The initial moisture content and pH of growth medium were 65% and 6.0, respectively, and the enzyme yield 23.6 U g−1 carbon source. Two isozymes of N-acetyl-β-d-glucosaminidase, called N-acetyl-β-d-glucosaminidases I and II, were isolated from the culture filtrate of F. oxysporum F3. The filtrate was subjected to ammonium sulphate fractionation followed by anion exchange, gel filtration, hydrophobic interaction and cation exchange chromatography. The optimum pH of isozymes I and II was 5.0 and 6.0, respectively, whereas maximum activity of both isozymes was obtained at 40 °C. The Km of isozymes I and II was 49.6 and 48.6 μM and the Vmax 1.24 and 0.26 μmol mg−1 min−1, respectively, on p-nitrophenyl N-acetyl-β-d-glucosaminide as substrate. The molecular mass of isozymes I and II was calculated to be 67 kDa by SDS–PAGE.  相似文献   

14.
ThxynA, an extracellular xylanase of T. halotolerans YIM 90462T, was purified to homogeneity from a fermentation broth by ultra-filtration, ammonium sulphate precipitation, hydrophobic chromatography and ion exchange chromatography. The purified xylanase has a molecular mass of 24 kDa and is optimally active at 80 °C and pH 6.0. The enzyme is stable over a broad pH range (pH 6.0–10.0) and shows good thermal stability when incubated at 70 °C for 1 h. The Km and Vmax values of the enzyme are 11.6 mg/mL and 434 μmol mg?1 min?1, respectively, using oat spelt xylan as a substrate. Moreover, the enzyme seemingly has both xylanase activity and cellulase activity. These unique properties suggest that it may be useful for industrial applications.  相似文献   

15.
Phage lytic enzymes are promising antimicrobial agents. Lysins of phages phi11 (LysPhi11) and phi80α (LysPhi80α) can lyse (destroy) cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The objectives of the study were to investigate the stability of lysins of phages phi11 and phi80α in storage and functioning conditions, to identify optimum storage conditions and causes of inactivation. Stability of the recombinant LysPhi11 and LysPhi80α was studied using turbidimetry. CD-spectroscopy, dynamic light scattering, and electrophoresis were used to identify causes of inactivation. At 37 °C, pH 7.5 and concentration of NaCl not higher than 150 mM, LysPhi11 molecules contain a high percentage of random coils (43%). However, in spite of this the enzyme has high activity (0.4–0.8 OD600 nm s−1 mg−1). In storage conditions (4 °C and 22 °C, pH 6.0–9.0, 10–500 mM NaCl) LysPhi11 is inactivated by a monomolecular mechanism. The optimum storage conditions for LysPhi11 (4 °C, pH 6.0–7.5, 10 mM NaCl) were selected under which the time of the enzyme half-inactivation is 120–160 days. LysPhi80α stability is insufficient: at 37 °C the enzyme loses half of its activity almost immediately; at 4 °C and 22 °C the time of half-inactivation of LysPhi80α varies in the range from several hours to 3 days. Despite the common properties in the manifestation of antistaphylococcal activity the kinetic behavior of the enzymes is different. LysPhi11 is a more promising candidate to be used as an antimicrobial agent.  相似文献   

16.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

17.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

18.
d-Allose was considered as a kind of rare sugars with testified potential medicinal and agricultural benefits. l-Rhamnose isomerase (L-RI, EC 5.3.1.14), an aldose-ketose isomerase, played a significant part in producing rare sugar. In this article, a thermostable d-allose-producing L-RI was characterized from a thermotolerant bacterium, Thermobacillus composti KWC4. The recombinant L-RI was activated obviously in the presence of Mn2+ with an optimal pH 7.5 and temperature 65 °C. The Michaelis-Menten constant (Km), turnover number (kcat) and catalytic efficiency (kcat/Km) for l-rhamnose were 33.8 mM, 1189.8 min−1 and 35.2 min−1 mM−1, respectively. At a higher temperature, Mn2+ played a pivotal role in strengthening the thermostability of T. composti L-RI. The differential scanning calorimetry (DSC) results showed the denaturing temperature (Tm) of T. composti L-RI was increased by 3 °C in presence of Mn2+. Although the T. composti L-RI displayed the optimum substrate as l-rhamnose, it could also effectively catalyze the isomerization between d-allulose and d-allose. When the reaction reached equilibrium, the sole product d-allose was produced from D-alluose by T. composti L-RI.  相似文献   

19.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

20.
A new fungal peroxidase (Pspd) from Perenniporia subacida was purified by ammonium sulfate precipitation, DEAE-cellulose DE52 anionic exchange and Sepharose GL-6B chromatography, resulting in a high specific activity of 9.138 U mg−1, 3.622-fold higher than that of crude enzyme at the same level. Polyacrylamide gel electrophoresis and UV–vis adsorption spectrum analysis showed that the purified enzyme is a heme-containing monomer with a molecular mass of 43.0 kDa. Optimal peroxidase activity was obtained at pH 5.5 and 30 °C when using 100.0 mM n-propanol as substrate, and under these conditions, the catalytic efficiency (kcat/Km) is 1.57 s−1 μM−1. Pspd was inhibited by l-cysteine, dithiothreitol, EDTA and sodium azide, but stimulated by Mn2+, Na+, Mg2+ and K+. The enzyme is stable over a broad pH range of 7.0–8.5 after incubation for 72 h, which indicated that the enzyme is lasting alkaline-tolerant. It was worth noting that the chloride at relatively low concentrations can enhance the peroxidase activity, with concomitant increase in substrate affinity. Additionally, Pspd performed high decolorization capability toward structurally various dyes and the capability was independent of the oxidizing mediators, with 75.31% of Neutral Red (50.0 mg L−1) being decolorized by 1.5 U mL−1 pure enzyme after incubation for 72 h. These properties demonstrated that Pspd has potentials for textile dyes decolorization applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号