首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial resistance has emerged as a global threat to human health. Natural transformation is an important pathway for horizontal gene transfer, which facilitates the dissemination of antibiotic resistance genes (ARGs) among bacteria. Although it is suspected that artificial sweeteners could exert antimicrobial effects, little is known whether artificial sweeteners would also affect horizontal transfer of ARGs via transformation. Here we demonstrate that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) promote transfer of ARGs via natural transformation in Acinetobacter baylyi ADP1, a model organism for studying competence and transformation. Such phenomenon was also found in a Gram-positive human pathogen Bacillus subtilis and mice faecal microbiome. We reveal that exposure to these sweeteners increases cell envelope permeability and results in an upregulation of genes encoding DNA uptake and translocation (Com) machinery. In addition, we find that artificial sweeteners induce an increase in plasmid persistence in transformants. We propose a mathematical model established to predict the long-term effects on transformation dynamics under exposure to these sweeteners. Collectively, our findings offer insights into natural transformation promoted by artificial sweeteners and highlight the need to evaluate these environmental contaminants for their antibiotic-like side effects.Subject terms: Antibiotics, Public health  相似文献   

2.
Horizontal gene transfer (HGT) can create diversity in the genetic repertoire of a lineage. Successful gene transfer likely occurs more frequently between more closely related organisms, leading to the formation of higher-level exchange groups that in some respects are comparable to single-species populations. Genes that appear fixed in a single species can be replaced through distant homologs or iso-functional analogs acquired through HGT. These genes may originate from other species or they may be acquired by an individual strain from the species pan-genome. Because of their similarity to alleles in a population, we label these gene variants that are exchanged between related species as homeoalleles. In a case study, we show that biased gene transfer plays an important role in the evolution of aminoacyl-tRNA synthetases (aaRS). Many microorganisms make use of these genes against naturally occurring antibiotics. We suggest that the resistance against naturally occurring antibiotics is the likely driving force behind the frequent switching between divergent aaRS types and the reason for the maintenance of these homeoalleles in higher-level exchange groups. Resistance to naturally occurring antibiotics may lead to the maintenance of different types of aminoacyl-tRNA synthetases in Bacteria through gene transfer.  相似文献   

3.
Transfer of plasmid R100-1 was reduced 100-fold in the absence of integration host factor.  相似文献   

4.
The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar.  相似文献   

5.
6.
Characterization of the F-plasmid conjugative transfer gene traU.   总被引:5,自引:4,他引:1       下载免费PDF全文
We characterized the traU gene of the Escherichia coli K-12 conjugative plasmid F. Plasmids carrying segments of the F transfer operon were tested for their capacity to complement F lac traU526. The protein products of TraU+ clones were identified, and the nucleotide sequence of traU was determined. traU mapped between traW and trbC. It encodes a 330-amino-acid, Mr36,786 polypeptide that is processed. Ethanol caused accumulation of a precursor polypeptide; removal of ethanol permitted processing of the protein to occur. Because F lac traU526 strains appear to be resistant to F-pilus-specific phages, traU has been considered an F-pilus assembly gene. However, electron microscopic analysis indicated that the traU526 amber mutation caused only a 50% reduction in F-piliation. Since F lac traU526 strains also retain considerable transfer proficiency, new traU mutations were constructed by replacing a segment of traU with a kanamycin resistance gene. Introduction of these mutations into a transfer-proficient plasmid caused a drastic reduction in transfer proficiency, but pilus filaments remained visible at approximately 20% of the wild-type frequency. Like traU526 strains, such mutants were unable to plaque F-pilus-specific phages but exhibited a slight sensitivity on spot tests. Complementation with a TraU+ plasmid restored the wild-type transfer and phage sensitivity phenotypes. Thus, an intact traU product appears to be more essential to conjugal DNA transfer than to assembly of pilus filaments.  相似文献   

7.
Certain virulence region operons of the Agrobacterium tumefaciens Ti plasmid promoted conjugative Ti plasmid transfer. Mutations in the vir region of pTiC58 inhibited conjugative plasmid transfer between A. tumefaciens strains. Mutations in virA, virG, 5' virB, and virE had the greatest effect on plasmid transfer, and mutations in virC had no effect. Transfer inhibition in vir mutants occurred in the presence or absence of acetosyringone.  相似文献   

8.
The human microbiota is suggested to be a reservoir of antibiotic resistance (ABR) genes, which are exchangeable between transient colonizers and residing bacteria. In this study, the transfer of ABR genes from Enterococcus faecalis to Listeria monocytogenes and to commensal bacteria of the human gut microbiota was demonstrated in a colonic fermentation model. In the first fermentation, an E. faecalis donor harboring the marked 50-kb conjugative plasmid pRE25(*) and a chromosomal marker was co-immobilized with L. monocytogenes and infant feces. In this complex environment, the transfer of pRE25(*) to L. monocytogenes was observed. In a second fermentation, only the E. faecalis donor and feces were co-immobilized. Enumeration of pRE25(*) and the donor strain by quantitative PCR revealed an increasing ratio of pRE25(*) to the donor throughout the 16-day fermentation, indicating the transfer of pRE25(*) . An Enterococcus avium transconjugant was isolated, demonstrating that ABR gene transfer to gut commensals occurred. Moreover, pRE25(*) was still functional in both the E. avium and the L. monocytogenes transconjugant and transmittable to other genera in filter mating experiments. Our study reveals that the transfer of a multiresistance plasmid to commensal bacteria in the presence of competing fecal microbiota occurs in a colonic model, suggesting that commensal bacteria contribute to the increasing prevalence of antibiotic-resistant bacteria.  相似文献   

9.
Antibiotic-resistant pathogens pose a significant threat to human health. Several dispersal mechanisms have been described, but transport of both microbes and antibiotic resistance genes (ARGs) via atmospheric particles has received little attention as a pathway for global dissemination. These atmospheric particles can return to the Earth’s surface via rain or snowfall, and thus promote long-distance spread of ARGs. However, the diversity and abundance of ARGs in fresh snow has not been studied and their potential correlation with particulate air pollution is not well explored. Here, we characterized ARGs in 44 samples of fresh snow from major cities in China, three in North America, and one in Europe, spanning a gradient from pristine to heavily anthropogenically influenced ecosystems. High-throughput qPCR analysis of ARGs and mobile genetic elements (MGEs) provided strong indications that dissemination of ARGs in fresh snow could be exacerbated by air pollution, severely increasing the health risks of both air pollution and ARGs. We showed that snowfall did effectively spread ARGs from point sources over the Earth surface. Together our findings urge for better pollution control to reduce the risk of global dissemination of antibiotic resistance genes.Subject terms: Environmental sciences, Air microbiology  相似文献   

10.
Antibiotic-induced lateral transfer of antibiotic resistance   总被引:11,自引:0,他引:11  
As do many temperate bacteriophages, integrating conjugative elements (ICEs) recruit the SOS DNA damage response to mobilize themselves from the bacterial chromosome and infect other cells. This transfers resistance to multiple antibiotics. Several commonly used antibiotics induce the SOS response, potentially hastening genetic change and the evolution to resistance of pathogenic populations. The use of such antibiotics should be reconsidered.  相似文献   

11.
Glucose can promote a glucocorticoid resistance state   总被引:1,自引:0,他引:1  
It has been shown that ingestion of glucose, amino acids, protein or mixed meals tends to increase serum and salivary cortisol concentrations in healthy adults. Recently, it has been demonstrated that morning glucose ingestion stimulates pulsatile cortisol and adrenocorticotropic hormone (ACTH) secretion, thus elevating their mean concentrations. In light of the above, a question arises: could the frequent food – and specifically glucose – consumption lead to hypercortisolism with possible clinical implications? And can the human body, under normal conditions raise defence mechanisms against the transient hypercortisolism caused by the frequent glucose consumption? Studies have revealed novel mechanisms, which are implicated in the glucocorticoid receptor (GR)-mediated action, providing a kind of glucocorticoid resistance. This glucocorticoid resistance could be mediated through both enhancing acetylation (via, among others, regulation of essential clock genes such as Per) and inhibiting deacetylation of GR (via possible regulation of sirtuin activity). Interestingly, the acetylation/deacetylation processes seem to be regulated by glucose. Thus, glucose apart from causing increased cortisol secretion can, simultaneously, counter-regulate this hypercortisolism, by promoting directly and/or indirectly a glucocorticoid resistance state. Undoubtedly, before extracting conclusions regarding the clinical significance of the increased cortisol secretion following glucose ingestion, we should first thoroughly investigate the ‘defence’ mechanisms provided by ‘nature’ to handle this hypercortisolism.  相似文献   

12.
The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp+Cu+Zn strain (DGE50) to AmpCuZn+ strain (DGE57), producing Amp+Cu+Zn+ transconjugants (DGETC50→57) and Amp+CuZn+ transformants (DGETF50→57). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature.  相似文献   

13.
抗生素在医疗、畜牧和水产养殖业的大量使用造成了环境中耐药细菌和抗性基因的日益增加,也加速了抗性基因在环境细菌间的传播扩散.本研究以环境样本直接提取的总DNA为模板,运用热不对称交错PCR (thermal asymmetric interlaced PCR, Tail-PCR)技术直接扩增抗生素抗性基因上下游序列.通过优化Tail-PCR反应程序,单循环同时扩增出tetW基因的多条侧翼序列,包括6条上游序列和9条下游序列.基于序列的生物信息学分析发现,上游包括一段反向重复序列和已知的一段tetW调节肽序列以及一个已知的插入序列,下游包括一个保守的未知序列和一个开放式阅读框架(the open reading frame,ORF)编码甲基转移酶.结果不仅发现了可能协助tetW基因传播的功能元件,也提供了一个未知侧翼序列高效和便捷的研究方法,即采用Tail-PCR技术,一组样品即能便捷获得多条侧翼序列.  相似文献   

14.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

15.
Broad host range gene transfer: plasmids and conjugative transposons   总被引:2,自引:0,他引:2  
Abstract Conjugation is the primary route of broad host range DNA transfer between different genera of bacteria. Plasmids are the most familiar conjugative elements, but there are also self-transmissible integrated elements called conjugative transposons. Conjugative transposons have been found in many genera of gram-positive bacteria, in mycoplasmas and in gram negative bacteria such as Bacteriodes spp. and Moraxella spp., and they have a very broad host range. The best-studied conjugative transposons are: the ones related to Tn 916 , a 16 kb conjugative transposon found originally in Gram-positive bacteria; Tn 5276 , a 70 kb conjugative transposon from Lactococcus lactis ; and a group of large (> 70 kb) conjugative transposons found in Bacteroides spp. Transfer of conjugative transposons takes place in three steps: excision to form a circular intermediate, transfer of one strand of the circular intermediate to a recipient, and integration into the recipient genome. Some conjugative transposons integrate almost randomly, whereas other integrate site-specifically. Conjugative transposons not only transfer themselves but also mobilize co-resident plasmids, either by providing transfer functions in trans or by inserting themselves into the plasmid. In addition, the conjugative transposons found in Bacteroides spp. can excise and mobilize unlinked integrated elements, called NBUs. Transfer of many of the Bacteroides conjugative transposons is regulated by tetracycline, whereas transfer of Tn 916 and other conjugative transposons appears to be constitutive. The conjugative transposons are clearly widespread in clinical isolates, but their distribution in environmental isolates remains to be determined.  相似文献   

16.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in people suffering from cystic fibrosis (CF). In CF airways, P. aeruginosa forms surface-associated communities called biofilms. Compared with free-swimming cultures, biofilms resist clearance by the host immune system and display increased resistance to antimicrobial agents. In this study we developed a technique to coat surfaces with molecules that are abundant in CF airways in order to investigate their impact on P. aeruginosa biofilm development. We found that P. aeruginosa biofilm development proceeds differently on surfaces coated with the glycoprotein mucin compared with biofilm development on glass and surfaces coated with actin or DNA. Biofilms formed on mucin-coated surfaces developed large cellular aggregates and had increased tolerance to the antibiotic tobramycin compared with biofilms grown on glass. Analysis of selected mutant backgrounds in conjunction with time-lapse microscopy revealed that surface-associated motility was blocked on the mucin surface. Furthermore, our data suggest that a specific adhesin-mucin interaction immobilizes the bacterium on the surface. Together, these experiments suggest that mucin, which may serve as an attachment surface in CF airways, impacts P. aeruginosa biofilm development and function.  相似文献   

17.
Drug resistance and the transferability of resistance were examined in 218 Enterococcus faecium clinical isolates obtained from in-patients of a Japanese university hospital between 1990 and 1999. One hundred and sixty one isolates (73.9%) were drug-resistant and 127 (58.2%) isolates were resistant to two or more drugs. Vancomycin resistant E. faecium (VRE) was not isolated. The transferability of drug-resistance to an E. faecium strain was examined by broth or filter mating. Six (12.5%) of the 48 gentamicin resistance traits, and fifty (50%) of the 101 erythromycin resistance traits were transferred by filter mating. The gentamicin resistance traits of five isolates and the erythromycin resistance traits of four isolates were transferred to the recipient strains by both broth mating and filter mating at a frequency of about 10(-6) and 10(-5) per donor cell, respectively. The five gentamicin resistant strains were shown to harbor pMG1-like plasmids on the basis of their Southern hybridization with pMG1 (65.1 kbp, Gm(r)), which transfers efficiently between enterococci by broth mating. Each of the four erythromycin resistant transconjugants obtained by broth mating harbored a large conjugative plasmid (more than 100 kbp). The plasmids showed no homology with well-characterized enterococcal conjugative plasmids such as pAD1, pPD1, pAM(beta)1, pIP501 and pMG1 by Southern hybridization. Of the erythromycin resistance traits that transferred only by filter mating, it was found that the erythromycin resistance trait was conferred by a 47-kbp transposable element that transferred from the chromosome of the donor strain to different sites within the pheromone responsive plasmid pAD1 (60 kbp) of the recipient strain, suggesting that the erythromycin resistance trait was encoded on a conjugative transposon, which was named Tn950.  相似文献   

18.
【目的】调查城市河流泰安市渿河(贯穿城区)中产超广谱β-内酰胺酶(extended-spectrum β-lactamases,ESBLs)大肠杆菌的分布及其多重耐药性与耐药基因携带情况,探究其耐药基因传递规律。【方法】采用Kirby-Bauer法测定耐药表型,用PCR和基因序列测定法进行耐药基因、整合子检测和多位点序列分型,并进行细菌接合试验。【结果】从272份水样中分离88株产ESBLs大肠杆菌,分离率32.4%,多重耐药率为59.1%。耐药基因检测出blaTEM、qnrS、AacC2、aac(6’)-Ib-cr、oqxA、OXA、AacC4,携带率分别为94.3%、33.0%、29.5%、12.5%、11.4%、6.8%、5.6%,59.0%菌株携带多种耐药基因。MLST分型检测出47种ST型,ST38为主要分型占13.6%,发现ST131两株。I类整合子检出率26.1%,其中,dfrA17-aadA5阳性率为13.6%。接合率为83.0%(73/88),72.6%的接合子发生耐药谱变窄,供体菌所携带的七种耐药基因均发生了水平传递。【结论】城市河流中细菌多重耐药现象严重且耐药性可水平传递,存在城市公共卫生安全隐患。  相似文献   

19.
20.
The molecular organization of the conjugative cat-erm-tet region of Streptococcus agalactiae B109 was examined by cloning large contiguous portions of the strain B109 chromosome, using a cosmid vector system. The organization of this region was compared with pDP5, a plasmid which acquired this resistance element by transposition. Both the chromosomal copy and the transposed copy of the resistance region were found to be 67-kilobases long, although sequences at the boundary of the transposed copy of the element showed some rearrangement. In addition to the stable chromosomal state, we present evidence which suggests the presence of a circular form of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号