首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Phosphoenolpyruvate carboxykinase of chicken liver cytosol was purified to homogeneity by procedures including affinity chromatography with GTP as a ligand. The purified enzyme showed a molecular weight of 68,000 on gel electrophoresis in the presence of dodecyl sulfate. Comparative studies on this enzyme and its isozyme purified from chicken liver mitochondria were performed. As regards amino acid composition, the cytosolic enzyme was quite different from the mitochondrial enzyme, but was rather similar to rat liver cytosolic phosphoenolpyruvate carboxykinase. Specific activities of the cytosolic enzyme were 30-100% higher than those of the mitochondrial enzyme for oxaloacetate-CO2 exchange, oxaloacetate decarboxylation, and phosphoenolpyruvate carboxylation reactions, though the relative rates of the activities were similar, decreasing in the order given. Apparent Michaelis constants for oxaloacetate in the oxaloacetate decarboxylation reaction were 11.6 and 17.9 microM for the cytosolic and the mitochondrial enzyme, respectively, but the values for GTP, GDP, phosphoenolpyruvate, and CO2 in the oxaloacetate decarboxylation and phosphoenolpyruvate carboxylation reactions were 1.3-2.2 times higher for the cytosolic enzyme than for the mitochondrial enzyme. Thus, the fundamental catalytic properties of the chicken liver phosphoenolpyruvate carboxykinase isozymes were rather similar, despite the marked difference in amino acid compositions.  相似文献   

2.
Phosphoenolpyruvate carboxykinase from bullfrog liver mitochondria has been purified to electrophoretical and immunological homogeneity by an improved method using hydrophobic chromatography on Sepharose-hexane-GMP and affinity chromatography on phosphocellulose. The molecular weight was determined to be 70,000 by SDS-gel electrophoresis, 65,000 by Sephadex G-100 gel filtration and 72,000 by glycerol gradient centrifugation. The isoelectric point was determined to be 6.2, differing from that of the cytosol enzyme. The rabbit IgG fraction against the mitochondrial PEP carboxykinase precipitated not only the mitochondrial but also the cytosol enzyme. The dissociation constant of the nucleotide-enzyme complex was determined to be 3 microM for GTP, 8.5 microM for GDP, and 171 microM for GMP. The affinity of GTP for the enzyme was reduced in the presence of phosphoenolpyruvate or Mn2+, whereas that of GDP was not changed. GMP inhibited the enzyme competitively with GDP for the phosphoenolpyruvate carboxylation and competitively with GTP for the exchange reaction between [14C]HCO3- and oxaloacetate. The purified enzyme was found to have a cysteine residue which reacted with iodoacetamide to form inactive enzyme. Guanine nucleotides or IDP and Mn2+ at a lower concentration prevented the inactivation by iodoacetamide of the enzyme in a competitive manner. Binding of guanine nucleotide to the enzyme and the relation of the sulfhydryl group to the nucleotide binding are discussed.  相似文献   

3.
1. The regulation of the synthesis of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) in epididymal adipose tissue, liver and kidney in vivo was studied immunochemically. 2. Phosphoenolpyruvate carboxykinase (GTP) synthesis in adipose tissue is increased by starvation, diabetes and noradrenaline, and decreased by re-feeding and insulin. These changes were also seen in adrenalectomized rats and are qualitatively similar to those observed for the liver enzyme. This indicates the involvement of cyclic AMP as an inducer and insulin as a de-inducer in the regulation of phosphoenolpyruvate carboxykinase (GTP) in both tissues. (Induction and de-induction are defined as selective increase and decrease respectively in the rate of enzyme synthesis, regardless of the mechanism involved.)3. Adrenalectomy had little effect on phosphoenolpyruvate carboxykinase (GTP) synthesis in liver and kidney, but increased the synthesis rate of the adipose-tissue enzyme. Starvation and adrenalectomy had additive effects in increasing the synthesis rate of adipose-tissue phosphoenolpyruvate carboxykinase (GTP). In adrenalectomized diabetic rats glucocorticoids increased phosphoenolpyruvate carboxykinase (GTP) synthesis in liver and kidney while decreasing enzyme synthesis in adipose tissue. De-induction of adipose tissue phosphoenolpyruvate carboxykinase (GTP) is therefore regulated independently by glucocorticoids and insulin. 4. Although liver, kidney and adipose-tissue phosphoenolpyruvate carboxykinases (GTP) are seemingly identical, there is an apparent tissue-specific differentiation in regulatory systems for the enzyme.  相似文献   

4.
The effect glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP)(EC4.1.1.32) in rat liver and kidney in vivo was studied immunochemically. The glucocorticoid analogue triamcinolone (9alpha-fluoro-11beta, 21-dihydroxy-16alpha,17alpha-isopropylidenedioxypregna-1,4-diene-3,20-dione) increased the synthesis rate of the kidney enzyme in starved animals. Both triamcinolone and cortisol decreased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP) in fed and starved rats, but were without effect on the degradation rate of the enzyme. This effect of triamcinolone in liver was reversed by injection of dibutyryl cyclic AMP. However, in diabetic animals glucocorticoids increased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP). Triamcinolone administration to starved rats in vivo is shown to cause an increase in the portal blood concentrations of insulin and glucose. Since the physiological de-inducer of liver phosphoenolpyruvate carboxykinase (GTP) is insulin, this is the probable cause of the decrease in the synthesis rate of the hepatic enzyme noted when glucocorticoids are administered to non-diabetic animals.  相似文献   

5.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

6.
Electrophoretically homogeneous phosphoenolpyruvate carboxykinase (EC 4.1.1.49) from Saccharomyces cerevisiae was obtained in high yields by means of a two-step purification procedure consisting of ion-exchange chromatography and affinity chromatography on adenosine 5'-monophosphate-Sepharose 4B. In the latter step the binding of the enzyme to the resin specifically required the presence of Mn2+. The enzyme was eluted when Mn2+ was removed by addition of ethylenediaminetetraacetate to the elution buffer. Homogeneity, molecular weight, and subunit composition of phosphoenolpyruvate carboxykinase were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. A factor which caused an underestimation of the enzyme activity in crude extracts was identified as adenylate kinase. Finally, a method is proposed for the enzymatic assay of bicarbonate using a purified phosphoenolpyruvate carboxykinase preparation.  相似文献   

7.
8.
Calcium has no known direct effect on phosphoenolpyruvate carboxykinase from rat liver cytosol. However, addition of calcium salts to liver postnuclear supernatant led to an increase in assayable enzyme activity in cytosols. This indicates that mitochondria and microsomes present in postnuclear supernatant can participate in observed enzyme activation. The stimulation of phosphoenolpyruvate carboxykinase was prevented by the manganese complexion 1-(2-pyridylazo)-2-naphthol, was not additive with activation by MnCl2 and was inhibited by La3+, Sr2+ and ruthenium red. These data indicate that manganese and mitochondrial or microsomal calcium carriers participate in the mechanism of indirect calcium effect. Measuring of manganese content in cytosols directly, by atomic absorption spectrometry, has provided evidence that there is a pool of manganese associated with mitochondrial and microsomal fraction of rat liver that can be mobilized to the cytosol by calcium ions. The direct addition of this pool of manganese to the cytosol caused the stimulation of phosphoenolpyruvate carboxykinase activity to the same levels as did calcium ions in the postnuclear supernatant. It is postulated that calcium can effect enzyme activity indirectly by releasing manganese from specific cellular compartments into the cytosol.  相似文献   

9.
10.
1. Phosphoenolpyruvate carboxykinase (GTP) in the cytosol fraction of liver was labelled in young rats by the injection of [(3)H]leucine and then isolated with specific antibody. Antibody-antigen precipitates from ;pulse'-labelled animals and from animals in which the content of radioactive enzyme had been decreased by a period of degradation were separated by electrophoresis on sodium dodecyl sulphate-polyacrylamide gels. No radioactive breakdown products were found. 2. (3)H-labelled phosphoenolpyruvate carboxykinase (GTP) was purified from rat liver and used to measure degradation in vitro. There was first a loss of catalytic activity, then a disappearance of immunological activity and finally a loss of solubility before any evidence of proteolytic cleavage. Proteolytic-cleavage fragments, when found, were also insoluble. 3. An analysis of the subcellular location of enzyme inactivation showed that phosphoenolpyruvate carboxykinase (GTP) was stable when incubated with liver cytosol fraction and was inactivated most rapidly by the microsomal fraction. 4. We propose that denaturation of the enzyme is the rate-limiting step in degradation in vivo, and precedes proteolytic cleavage when the enzyme is incubated with liver preparations in vitro.  相似文献   

11.
Previous work from our laboratory (Hod, Y., Utter, M. F., and Hanson, R. W. (1982) J. Biol. Chem. 257, 13787-13794) has demonstrated that chicken kidney contains both mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) and that the two forms are distinct proteins. Using poly(A+) RNA from chicken kidney, a double-stranded cDNA library was constructed. DNA clones containing sequences complementary to the mRNA for the cytosolic form of phosphoenolpyruvate carboxykinase were initially identified by colony hybridization with 32P-labeled cDNA transcribed from an RNA fraction enriched for the enzyme mRNA. The identity of plasmids containing phosphoenolpyruvate carboxykinase cDNA was confirmed by hybrid-selected translation. Mature mRNA for cytosolic phosphoenolpyruvate carboxykinase of the chicken is 2.8 kilobases in length, similar to that previously noted for mRNA coding for the same enzyme in the rat. The cDNA for the chicken enzyme hybridizes with several restriction fragments of the corresponding cDNA for the rat cytosolic phosphoenolpyruvate carboxykinase, indicating conservation of nucleotide sequences during evolution. Wide spread conservation of sequence homology is also demonstrated by the hybridization of the cDNA for the rat phosphoenolpyruvate carboxykinase with a 2.8-kilobase RNA from the livers of a variety of vertebrates including amphibian, avian, and primate species. Specific mRNA coding for the cytosolic form of phosphoenolpyruvate carboxykinase was present in chicken kidney but absent from the liver, even in animals starved for 48 h. However, the administration of cAMP to normal fed chickens caused a rapid induction of phosphoenolpyruvate carboxykinase mRNA. These findings suggest that the gene for the cytosolic enzyme in chicken liver can be expressed if the proper hormonal stimuli are present.  相似文献   

12.
1. The inactivation of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) in liver extracts was catalysed by the microsomal fraction, and led to the enzyme becoming bound to the microsomal membranes. 2. Inactivation by microsomal fraction, typsin or heating at 48degreesC was accelerated by L-cystine, D-cystine and oxidized glutathione and decreased by dithiothreitol. 3. MnC1(2) and CoC1(2) protected the enzyme from inactivation by heat or microsomal fraction, but did not affect the inactivation caused by trypsin. 4. Several proteinase inhibitors had no effect on the microsomal inactivation reaction, suggesting that proteolysis was not involved. 5. It is argued that the initial step in the degradation of phosphoenolpyruvate carboxykinase (GTP) is an inactivation reaction, perhaps involving oxidized thiol compounds.  相似文献   

13.
The effect of starvation on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), and on the response of the enzyme to N6-O2'dibutyryl adenosine 3', 5'-monophosphate was investigated in intact and glucocorticoid-deprived rats. In the liver of intact animals, starvation produced a rapid increase in the concentration of cyclic AMP and a corresponding increase in the activity of phosphoenolpyruvate carboxykinase. The kinetics of both changes were not affected by adrenalectomy. Injection of N6-O2'-dibutyryl adenosine 3', 5'-monophosphate into intact starved rats resulted in an immediate, dramatic increase in phosphoenolpyruvate carboxykinase activity above the starvation level. Adrenalectomy completely blocked the response of the enzyme to the cyclic nucleotide. Restoration of hydrocortisone to the adrenalectomized animals restored the full N6-I2'dibutyryl adenosine 3', 5'-monophosphate effect after a lag period of 2 h. The physiological significance of these findings is considered. The data are interpreted with regard to the current hypothesis that glucocorticoids promote an increase in translatable phosphoenolpyruvate carboxykinase mRNA, while cyclic AMP enhances the translation of preexisting specific mRNA templates.  相似文献   

14.
15.
Phosphoenolpyruvate carboxykinase was purified from mitochondria of guinea-pig liver by affinity chromatography on GMP-Sepharose. The enzyme was purified 100-fold to a high degree of electrophoretic homogeneity as judged by detection of a single protein band on sodium dodecyl sulphate/polyacrylamide gels. The yield was about 16%. The Mr of the purified enzyme was estimated to be 68500 +/- 680 by analysis on sodium dodecyl sulphate/polyacrylamide gels. Antibodies raised in rabbits against the purified enzyme were highly specific for mitochondrial phosphoenolpyruvate carboxykinase and did not precipitate the cytosolic form of this enzyme from either rat or guinea-pig liver cytosol. The use of this antibody showed that starvation does not increase the amount of the enzyme. However, neonatal-development-dependent increase in its activity is shown to be mediated by accumulation of phosphoenol pyruvate carboxykinase-specific protein.  相似文献   

16.
We present here a radiochemical enzymatic endpoint assay for the guanine nucleotides GTP and GDP that is suitable for use with cell extracts. The major coupling enzyme used is phosphoenolpyruvate carboxykinase purified from chicken liver. The ancillary coupling enzyme, aspartate aminotransferase, was used to generate a low steady-state concentration of oxalacetate. GTP was determined by the overall conversion of [U-14C]aspartate into [14C]phosphoenolpyruvate. This reaction was also scaled-up as a preparative method for [U-14C]phosphoenolpyruvate. This was used with the same coupling enzymes in reverse to measure GDP by the formation of [14C]aspartate. The assay method was applied to isolated rat hepatocytes. The total GTP and GDP concentrations found were within the range reported by others for rat liver. The advantages of this assay are its sensitivity, specificity, and applicability to large numbers of samples.  相似文献   

17.
Acute hormonal effects on the synthesis rate of the cytosolic form of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP), were investigated using rat hepatocytes maintained in short-term suspension culture. Cells were pulse-labeled with [3H]leucine or [35S]methionine and the rate of synthesis of phosphoenolpyruvate carboxykinase was estimated after immunoprecipitation of cell extracts with specific antibodies or following high-resolution two-dimensional gel electrophoresis of cell proteins. Total RNA was also extracted from cultured cells and subsequently translated in a wheat germ cell-free protein-synthesis system, in order to quantify the level of functional mRNA coding for phosphoenolpyruvate carboxykinase. Glucagon, the single most effective inducer, causes a 15--20-fold increase in the level of specific mRNA in 2 h, accompanied by a similar increase in enzyme synthesis rate. The extent of induction is further amplified about threefold when dexamethasone is added to the culture medium. The synergistic action of dexamethasone does not require pre-exposure of the cells to the glucocorticoid, but on the contrary occurs without lag upon simultaneous addition of glucagon and dexamethasone. The induction of phosphoenolpyruvate carboxykinase mRNA by glucagon is markedly depressed in hepatocytes inhibited for protein synthesis by cycloheximide. Cycloheximide-inhibited cells, however, display a considerable induction of the message after joint stimulation with dexamethasone and glucagon. Thus, the synergistic action of dexamethasone does not require concomitant protein synthesis. These data provide indirect evidence for a primary effect of the glucocorticoids on the expression of the phosphoenolpyruvate carboxykinase gene. Besides glucagon and dexamethasone, the thyroid hormones are shown to influence the rate of phosphoenolpyruvate carboxykinase synthesis in isolated liver cells. The stimulatory effect of 3,5,3'-triiodothyronine (T3) is best demonstrated as a twofold increase in relative rate of enzyme synthesis in cells supplied with T3 plus glucagon, as compared to cells challenged with glucagon alone. The effect of T3 relies on a pretranslational mechanism, as shown by a commensurate increase in functional mRNA coding for phosphoenolpyruvate carboxykinase. Dose-response experiments with T3 as well as dexamethasone demonstrate effects at very low hormone levels, consistent with a role for these hormones as physiological modulators of phosphoenolpyruvate carboxykinase expression.  相似文献   

18.
Liver from Squalus acanthias (spiny dogfish), a representative elasmobranch, contains approximately 1.4 units (mumol/min) of phosphoenolpyruvate carboxykinase activity per gram and approximately 90% of the total units of activity are localized in the mitochondria. The mitochondrial phosphoenolpyruvate carboxykinase was isolated and characterized. The purified enzyme has properties generally similar to those found in mammalian and avian species. The enzyme has a molecular weight of approximately 70,000 and exists in a functional state as a monomer. The isolated enzyme displays a dual cation requirement (e.g., 6 mM Mg2+ and 10 microM Mn2+) for maximal activity; very little activity is observed when Mg2+ is present alone, and the maximal activity attained with Mn2+ alone (millimolar concentrations required) is significantly less than that observed under optimal conditions with both cations present. When assayed in the direction of oxalacetate formation there is a lag in product formation with time; the lag can be eliminated by the presence of 50 microM GTP (product). The Km for substrates is not affected by Mn2+ concentration, suggesting that the role of Mn2+ may not be related to substrate binding. The apparent Km for phosphoenolpyruvate (approximately 1 mM) is substantially higher than that reported for phosphoenolpyruvate carboxykinase from other species. The activity of phosphoenolpyruvate carboxykinase is increased 70% by physiological concentrations of urea. Maximal velocity of the reaction in the direction of oxalacetate formation is approximately half that of the reverse reaction.  相似文献   

19.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

20.
The effects of triamcinolone on renal and hepatic phosphoenolpyruvate carboxykinase activity in the developing rat were investigated. The hormone induced increases in pre-existing enzyme activity of both tissues in fetal and neonatal rats, yet did not cause the primary appearance of phosphoenolpyruvate carboxykinase activity in utero. Neonatal hepatic phosphoenolpyruvate carboxykinase activity was increased 2--3 fold by triamcinolone form the 3rd to the 15th postnatal day. This was shown to be additive to the effect of Bt2cAMP on enzyme activity. The increases in phosphoenolpyruvate carboxykinase activity were demonstrated to be due to increased synthesis of the enzyme, which was accompanied by a proportionate increase in the amount of functional phosphoenolpyruvate carboxykinase mRNA, as measured by the polyribosomal and poly(A)-containing RNA directed cell-free synthesis of the enzyme. The demonstration of a triamcinolone effect on kidney and liver phosphoenolpyruvate carboxykinase activity in fetal and neonatal rats provides support for a possible role of glucocorticoids in the regulation of phosphoenolpyruvate carboxykinase activity during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号