首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA extraction by zinc.   总被引:7,自引:1,他引:6       下载免费PDF全文
A fast, very simple and efficient method of DNA extraction is described which takes advantage of DNA sedimentation induced by millimolar concentrations of ZnCl2. The zinc-induced sedimentation is furthermore strongly promoted by submillimolar phosphate anion concentrations. Within <30 min, the method recovers >90% of DNA irrespective of whether a plasmid DNA or short oligonucleotides are the extracted material. The method works with plasmid DNA and oligonucleotide concentrations as low as 100 ng/ml and 10 microg/ml, respectively, without using any expensive facilities or toxic chemicals.  相似文献   

2.
Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations.  相似文献   

3.
Protein tyrosine phosphatases are not considered to be metalloenzymes. Yet, they are inhibited by zinc cations and metal and non-metal oxyanions that are chemical analogues of phosphate, e.g. vanadate. Metal inhibition is generally not recognized as these enzymes are purified, supplied, and assayed with buffers containing chelating and reducing agents. We screened a series of cations and anions for their capacity to inhibit protein tyrosine phosphatase 1B and discuss the ensuing general issues with inhibition constants reported in the scientific literature. In contrast to zinc, which binds to the phosphocysteine intermediate in the closed conformation of protein tyrosine phosphatase 1B when the catalytic aspartate has moved into the active site, other divalent cations such as cadmium and copper may also bind to the enzyme in the open conformation. Inhibition by both anions and cations, conditions such as pH, the presence of metal ligands such as glutathione, and the existence of multiple conformational states of protein tyrosine phosphatases in the reaction cycle establish a complex pattern of inhibition of these important regulatory enzymes with implications for the physiology, pharmacology and toxicology of metal ions.  相似文献   

4.
G A McPherson 《Life sciences》1990,47(17):1569-1577
The ability of bovine intestinal alkaline phosphatase (0.1-10 units/ml) to cleave myo-inositol bound phosphate moieties was examined. Paradoxically the digestion was optimal for a number of isomers at pH 5-7. It is possible that digestion at higher pH (9-10) does not proceed at maximal rates due to a conformation of the myo-inositol phosphate molecule which stabilizes the molecule against enzymatic attack. Alkaline phosphatase activity did not require the addition of added divalent cations. Moreover, several divalent cations, particularly zinc, were found to have a marked inhibitory effect. Further studies into this phenomenon suggested that some divalent cations can form insoluble complexes with myo-inositol phosphates, particularly those possessing a number of phosphate moieties, preventing the action of degradative enzymes. On the basis of these experiments we conclude that phosphate moieties can be removed from myo-inositol using relatively low concentrations of alkaline phosphatase as long as optimal incubation conditions are selected. This includes the use of a slightly acidic incubation media without the addition of divalent cations, particularly zinc.  相似文献   

5.
A protein which can render DNA largely acid-soluble has been purified 1600-fold from high salt extracts of Ustilago maydis. The activity is unusual in that substrate DNA is not made acid-soluble through hydrolysis to small oligomers. Rather, the protein appears to bind to DNA to form a complex which itself is acid-soluble. The activity of conversion of DNA to an acid-soluble form is cold-labile, but the inactivation by cold is reversible by brief heat treatment. Divalent cations stimulate the activity; phosphate is inhibitory. Optimal activity is observed at pH 6.0 and again at pH 9.0. Nucleoside triphosphates and diphosphates stimulate activity at low protein concentrations but are not hydrolyzed during the course of reaction. The protein behaves anomalously on gel filtration columns and is completely excluded by Sephadex or agarose gels. When analyzed by sedimentation velocity, the protein was found to sediment at 5.3 S, the same rate at which a globular protein of 65,000 daltons would sediment. Dependence of activity upon protein concentrations is sigmoidal. K+ and to a lesser degree NH4+ are partially effective in abolishing the lag in the concentration curve. The protein displays a saturation curve when exposed to increasing DNA concentrations. Such a curve could only result from a non-random or cooperative mode of binding of the protein to DNA. A mutant sensitive to gamma and ultraviolet radiation with an abnormally high level of the protein has been found. Haploid populations of the mutant grow slowly and contain a large proportion (10 to 20%) of inviable cells. Diploids are defective in mitotic allelic recombination and fail to complete meiosis. It is speculated that the protein may be important in the regulation of chromosome condensation.  相似文献   

6.
An ATPase was purified from mouse myeloma MOPC 70E the activity of which depends on the presence of single-stranded DNA and divalent cations such as Mg2+, Mn2+, Ca2+, Ni2+ or Fe2+. The enzyme splits both ribonucleoside and deoxyribonucleoside triphosphates but preferentially ATP and dATP yielding nucleoside diphosphates and inorganic phosphate. The enzyme has an absolute requirement for single-stranded DNA. Alternating double-stranded polydeoxynucleotides are only slight effective, and native double-stranded DNA, single-stranded and double-stranded RNAs as well as DNA - RNA hybrids are ineffective in stimulating the ATPase. The enzyme has further characterized by sedimentation in a sucrose density gradient (s20, w = 5.5 S) and by isoelectric focussing in an ampholine pH gradient (pI = 6.5).  相似文献   

7.
The nuclease domain of ColE7 (N-ColE7) contains an H-N-H motif that folds in a beta beta alpha-metal topology. Here we report the crystal structures of a Zn2+-bound N-ColE7 (H545E mutant) in complex with a 12-bp duplex DNA and a Ni2+-bound N-ColE7 in complex with the inhibitor Im7 at a resolution of 2.5 A and 2.0 A, respectively. Metal-dependent cleavage assays showed that N-ColE7 cleaves double-stranded DNA with a single metal ion cofactor, Ni2+, Mg2+, Mn2+, and Zn2+. ColE7 purified from Escherichia coli contains an endogenous zinc ion that was not replaced by Mg2+ at concentrations of <25 mM, indicating that zinc is the physiologically relevant metal ion in N-ColE7 in host E. coli. In the crystal structure of N-ColE7/DNA complex, the zinc ion is directly coordinated to three histidines and the DNA scissile phosphate in a tetrahedral geometry. In contrast, Ni2+ is bound in N-ColE7 in two different modes, to four ligands (three histidines and one phosphate ion), or to five ligands with an additional water molecule. These data suggest that the divalent metal ion in the His-metal finger motif can be coordinated to six ligands, such as Mg2+ in I-PpoI, Serratia nuclease and Vvn, five ligands or four ligands, such as Ni2+ or Zn2+ in ColE7. Universally, the metal ion in the His-metal finger motif is bound to the DNA scissile phosphate and serves three roles during hydrolysis: polarization of the P-O bond for nucleophilic attack, stabilization of the phosphoanion transition state and stabilization of the cleaved product.  相似文献   

8.
Purified intact Sindbis virus nucleocapsids were treated at different pH values or with various concentrations of divalent cations, cation chelators, salt, or formamide. The resulting structures were examined by velocity sedimentation, electron microscopy, and protein-protein cross-linking. Changes in each of the test conditions led to alterations in the sedimentation profile of treated nucleocapsids. Appropriate concentrations of formamide or divalent cations generated beaded strandlike structures similar in morphology to those generated from adenovirus cores and nucleosomes. The capsid protein and RNA remained associated with each other at NaCl concentrations less than or equal to 1 M or after treatment of the structures with alkaline pH up to and including pH 10.7. Protein and RNA were dissociated by salt concentrations of greater than 1 M, suggesting that the arginine-rich, amino-terminal portion of the capsid protein is responsible for binding the RNA. Protein-protein cross-linking also indicated that the capsid proteins remained associated in small aggregates under some of the conditions that caused dissociation of the nucleocapsid and suggested the presence of more than one type of protein-protein interaction in the nucleocapsids. Collectively, these data suggest that, like histones and adenovirus core proteins, the Sindbis virus capsid protein serves to package segments of the genome into nucleoprotein beads which are capable of interacting with each other to form the nucleocapsid structure.  相似文献   

9.
Conditions have been developed for an L-[3H]glutamate binding assay in which 85-95% of the specific binding is to a site that corresponds to the N-methyl-D-aspartate subclass of acidic amino acid receptors. Incubation of synaptic plasma membranes with L-[3H]glutamate in 50 mM Tris/acetate, pH 7.4, for 2-20 min at 2 degrees C results in binding with pharmacological characteristics of the electrophysiologically defined N-methyl-D-aspartate receptor. The fraction of glutamate binding to this subclass of receptors, relative to the total, decreases with both increased time and temperature. This binding is reversible, is concentrated in the synaptic plasma membrane fraction, has a pH optimum of 7.0-7.4, and is linear with respect to tissue protein concentration. The binding is unaffected by 1 mM concentrations of the anions sulfate, chloride, bromide, thiocyanate, phosphate, acetate, nitrate, or carbonate and the monovalent cations potassium or ammonium. However sodium and the divalent cations copper, cobalt, zinc, cadmium, and manganese decrease binding to this N-methyl-D-aspartate site.  相似文献   

10.
The interactions of the antitumor antibiotics, chromomycin A3, with a variety of metal cations in the pH range of 3.0–8.5 were systematically studied by CD, absorption, and 1H-nmr spectroscopies. Results were compared with those obtained in the presence of increasing amounts of calf thymus DNA. The negatively charged chromomycin A3, pKa 6.3, forms aggregates that become ordered and smaller in size, in the presence of variety of metal cations. Spectrophotometric titrations have shown that binding of the neutral drug to DNA at pH 4.5 does not require divalent cations, although the strength of the binding is greatly enhanced in their presence. At higher pH values (> 7.0) and low DNA/drug ratio ( > 20), the metal cations are necessary to induce the binding between chromomycin A3 and DNA. At higher DNA/drug ratios (> 100: 1), an appreciable proportion of the drug is bound even in the absence of divalent cations. Its binding affinity to the DNA is enhanced in the presence of these cations and at low pH values. Therefore, we conclude that chromomycin A3 binds in two related modes, in the presence and in the absence of divalent cations. The spectral data accumulated indicate the metal cation is involved in the binding of the drug to the DNA by forming a drug–metal–DNA ternary complex.  相似文献   

11.
Nowotny M  Yang W 《The EMBO journal》2006,25(9):1924-1933
In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the two metal ions suggests how they may facilitate RNA hydrolysis during the catalytic process. Firstly, metal ion A may assist nucleophilic attack by moving towards metal ion B and bringing the nucleophile close to the scissile phosphate. Secondly, metal ion B transforms from an irregular coordination in the substrate complex to a more regular geometry in the product complex. The exquisite sensitivity of Mg(2+) to the coordination environment likely destabilizes the enzyme-substrate complex and reduces the energy barrier to form product. Lastly, product release probably requires dissociation of metal ion A, which is inhibited by either high concentrations of divalent cations or mutation of an assisting protein residue.  相似文献   

12.
Danel F  Paetzel M  Strynadka NC  Page MG 《Biochemistry》2001,40(31):9412-9420
The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.  相似文献   

13.
We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.  相似文献   

14.
A deoxyribonucleic acid (DNA)-dependent DNA polymerase (DNA nucleotidyltransferase) was purified 3,000-fold from the marine Pseuodomonas sp. BAL-31. The molecular weight of the native enzyme was estimated by glycerol gradient sedimentation to be 110,000. The enzyme migrated in sodium dodecyl sulfate-acrylamide gels as a single polypeptide with a molecular weight of 105,000. An absolute requirement for divalent cation was satisfied by Mg2+ or Mn2+ at concentrations of 1 mM. Monovalent cations at concentrations higher than 50 mM showed an inhibitory effect. The polymerase activity was resistant to N-ethylmaleimide and showed a wide pH optimum.  相似文献   

15.
Thallium (Tl) binds to the major and minor grooves of B-DNA in the solid state (Howerton et al., Biochemistry 40, 10023-10031, 2001). The aim of this study was to examine the binding of Tl(I) cation with calf-thymus DNA in aqueous solution at physiological pH, using constant concentration of DNA (12.5 mM) and various concentrations of metal ions (0.5 to 20 mM). UV-visible and FTIR spectroscopic methods were used to determine the cation binding site, the binding constant and DNA structural variations in aqueous solution. Direct Tl bindings to guanine and thymine were evident by major spectral changes of DNA bases with overall binding constant of K = 1.40 x 10(4) M(-1) and little perturbations of the backbone phosphate group. Both major and minor groove bindings were observed with no alteration of the B-DNA conformation. At low metal concentration (0.5 mM), the number of cations bound were 10 per 1000 nucleotides, while at higher cation concentration (10 mM), this increased to 30 cations per 1000 nucleotides.  相似文献   

16.
In cells, there exists a delicate balance between accumulation of charged metal cations and abundant anionic complexes such as phosphate. When phosphate metabolism is disrupted, cell-wide spread disturbances in metal homeostasis may ensue. The best example is a yeast pho80 mutant that hyperaccumulates phosphate and as result, also hyperaccumulates metal cations from the environment and shows exquisite sensitive to toxicity from metals such as manganese. In this study, we sought to identify genes that when over-expressed would suppress the manganese toxicity of pho80 mutants. Two classes of suppressors were isolated, including the histone chaperones SPT16 and HPC2, and RAD23, a well-conserved protein involved in DNA repair and proteosomal degradation. The histone chaperone gene HPC2 reversed the elevated manganese and phosphate of pho80 mutants by specifically repressing PHO84, encoding a metal-phosphate transporter. RAD23 also reduced manganese toxicity by lowering manganese levels, but RAD23 did not alter phosphate nor repress PHO84. We observed that the RAD23-reversal of manganese toxicity reflected its role in protein quality control, not DNA repair. Our studies are consistent with a model in which Rad23p partners with the deglycosylating enzyme Png1p to reduce manganese toxicity through proteosomal degradation of glycosylated substrate(s).  相似文献   

17.
It is demonstrated that a two-state conformational isomerization is induced in the poly(amino2-dA-dT) duplex by submillimolar concentrations of divalent magnesium cations in low-salt aqueous solution. The isomerization is fast and has a low degree of cooperativity. The resulting conformer is the unusual X-DNA double helix originally observed with poly(dA-dT) at very high concentrations of CsF. Interestingly, the X form is induced in poly(amino2dA-dT) under the physiological conditions when poly(dG-methyl5dC) assumes Z-DNA. The same conditions of stabilization are presumably connected with the fact, observed in previous phosphorus NMR studies, that Z- and X-DNA have similar polydinucleotide backbone architectures. Results presented in this work permit to specify base pair exocyclic groups responsible for the radically different conformational variability of the synthetic DNA molecules containing alternating purine-pyrimidine sequences of GC or AT base pairs.  相似文献   

18.
The molecular weight of delta-5-3-ketosteroid isomerase from Pseudomonas testosteroni was determined by means of sedimentation equilibrium and exclusion chromatography over a wide range of enzyme concentrations in 0.2 M potassium phosphate buffer, pH 7.0. In addition, the sedimentation constant of the enzyme was determinded over an extended range of concentrations. The enzyme was found to have a molecular weight of 26,000 plus or equal to 1,000, suggesting that it is a dimer of identical or similar 13,400 molecular weight polypeptide chains. In the ultracentrifuge this dimeric species was found to undergo aggregation at enzyme concentrations above 2 mg per ml and dissociation at enzyme concentrations below 0.05 mg per ml. Exclusion chromatography studies indicate that under the conditions of chromatography the oligomeric enzyme is partially dissociated at enzyme concentrations in the range 0.2 to 0.002 mug per ml. These results suggest that under conditions of enzyme assay in 0.2 M potassium phosphate buffer, pH 7.0, isomerase is in a monomeric state of aggregation.  相似文献   

19.
Computer models estimated the ligand speciation and solubility of calcium, magnesium, zinc, and copper over a pH range for low molecular weight fractions characteristic of either human or bovine milks. Above pH 4 calcium is the only metal predicted to precipitate. Most of the remaining soluble calcium, magnesium, and zinc should be complexed with citrate. The solubility of calcium, magnesium, and zinc in human and bovine milks was measured experimentally from pH 2 to 7. The solubility of all three metals decreased as the pH increased. Calcium and zinc were soluble over a narrower pH range in bovine milk than in human milk. Increasing the levels of either calcium or inorganic phosphate alone in decaseinated human milk did not affect the solubility of zinc, but when both calcium and inorganic phosphate were added at levels comparable to bovine milk the solubility of zinc decreased at the higher pH's. The decreased solubility of zinc in skimmed milks in pH's characteristic of the small intestine is likely due to coprecipitation of zinc with calcium phosphate--a reaction not predicted for milk systems from known chemical solubility product data.  相似文献   

20.
Myo-inositol-1-phosphatase (EC 3.1.3.25) is able to hydrolyze myo-inositol-1-phosphate in the presence of Mg(2+) ions at neutral pH, and also p-nitrophenyl phosphate in the presence of Zn(2+)-ions at acidic pH. This enzyme plays a role in phosphatidylinositol cell signalling and is a putative target of lithium therapy in manic depression. We elucidate here the kinetic mechanism of the Zn-dependent activity of myo-inositol-1-phosphatase. As part of this analysis it was necessary to determine the basicity constants of p-nitrophenyl phosphate and the stability constant of its metal-complex in the presence of zinc chloride. We find that the Zn-dependent reaction may be described either by a rapid-equilibrium random mechanism or an ordered steady-state mechanism in which the substrate binds to the free enzyme prior to the metal ion. In both models the Zn-substrate complex acts as a high affinity inhibitor, yielding a dead-end species through its binding to the enzyme-Zn-substrate in rapid-equilibrium or to the enzyme-phosphate complexes in a steady-state model. Phosphate is a competitive inhibitor of the enzyme with respect to the substrate and an uncompetitive inhibitor with respect to zinc ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号