首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Phosphorus release from Microcystis aeruginosa and attached bacterium (Pseudomonas sp.) isolated from Lake Taihu was examined using a phosphorus isotope tracer in order to investigate the phosphorus transference between the two species. Our results reveal that the amount of phosphorus released form 32P-saturated M. aeruginosa is determined by its growth phase and most of phosphorus is assimilated by Pseudomonas finally while the amount of phosphorus released from 32P-saturated Pseudomonas is also determined by the growth phase of M. aeruginosa and most of them are assimilated by M. aeruginosa. The results suggest that phosphorus transference occurs between M. aeruginosa and its attached Pseudomonas . This process makes microenvironment of mucilage of M. aeruginosa attached bacteria maintain relative high amounts of phosphorus. Attached bacteria may be a temporary phosphorus bank to the growth of M. aeruginosa, and assimilation of phosphorus by M. aeruginosa becomes easy when M. aeruginosa is in lag growth phase. Thus, the phosphorus exchange between M. aeruginosa and attached Pseudomonas in microenvironment may be important to microfood web and cyanobacteria bloom.  相似文献   

2.
An experiment was carried out to evaluate the effects of phosphorus concentration (1, 4 and 10 mg l−1) and temperature (15 and 25°C) on chlorophyll a (chl a) contents and cell size/volume of green alga Scenedesmus obliquus and blue green alga Microcystis aeruginosa. Long-term field data from Lake Taihu, a large, shallow eutrophic lake between Jiangsu and Zhejiang Provinces, China, was also used to evaluate the effect of temperature on the model between chl a and total phosphorus (TP). The chl a content of both algae increased with an increase in phosphorus concentration and temperature. Temperatures showed a significantly different effect on chl a content of S. obliquus at a phosphorus concentration of 10 mg l−1, whereas there was no significant difference at the two lower phosphorus levels. For M. aeruginosa, temperatures presented significantly different effects on the chl a contents at three phosphorus concentrations. Chl a content of neither alga presented an interaction between the nutrient and the temperature. Long-term field data from Lake Taihu also indicated that the addition of temperature to the model increased predictability of chl a by TP. The length/diameter and volume of both algae were greater at the lower temperature and phosphorus concentration. Moderate negative correlations were observed between algal size, volume, and chl a content. Our results suggest that phosphorus concentration and temperature could change chl a contents and size in species-specific algal cells and that temperature should be considered when building the model of TP and chl a concentration.  相似文献   

3.
Microcystis aeruginosa and Aulacoseira distans strains were grown in batch cultures to investigate the consequences of N/P ratio on the growth of these species and on their abilities to take up nitrogen and phosphorus. N/P ratio did not influence the growth rates, which were similar under all the experimental conditions. However, exponential growth lasted longer in Microcystis than in Aulacoseira, especially under low N/P ratio conditions. Distinct patterns of nutrient uptake for Aulacoseira and Microcystis were observed. N-uptake was higher in Microcystis, but not influenced by N/P ratio. However, the amount absorbed was proportional to the concentration in the culture medium for both strains studied. Although Microcystis showed lower uptake of N per biomass unit, a greater yield of Microcystis growth relative to the diatom was observed. This could have resulted from its ability to produce biomass using less nitrogen per unit of biomass. A variation of N/P ratio in the culture medium during the growth of both species was observed. This owed to the uptake of nutrients, with Microcystis showing greater potential than Aulacoseira to influence the N/P ratio. Thus, in contrast to what has been stated in the literature, our results indicated that a low N/P ratio could be a consequence of the capacities and rates of cyanobacterial uptake of nitrogen and phosphorus.  相似文献   

4.

Background  

Haemophilus influenzae has an absolute aerobic growth requirement for either heme, or iron in the presence of protoporphyrin IX. Both iron and heme in the mammalian host are strictly limited in their availability to invading microorganisms. Many bacterial species overcome iron limitation in their environment by the synthesis and secretion of small iron binding molecules termed siderophores, which bind iron and deliver it into the bacterial cell via specific siderophore receptor proteins on the bacterial cell surface. There are currently no reports of siderophore production or utilization by H. influenzae.  相似文献   

5.
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.  相似文献   

6.
Phosphorus (P) transfer between Microcystis aeruginosa and the attached bacterium Pseudomonas was studied using radioactive P (32P) and green fluorescence protein-labeled Pseudomonas. M. aeruginosa in P-starved condition took up most 32P (70%) in water and about 50% of 32P in 32P-saturated bacteria in individual experiments. However, only 26% of 32P in the 32P-saturated M. aeruginosa was transferred to P-starved bacteria. The P-starved M. aeruginosa had an advantage to take up P over the bacteria and its growth rates and abundance were higher in combined cultures, with bacteria as the biotic P source. The rate of P transfer from bacteria to the cyanobacteria was slow. P cycles predominantly between M. aeruginosa and Pseudomonas with little variation in the water. This ability is very useful for the colony-forming M. aeruginosa, especially if phosphate concentrations in water are low during water bloom periods.  相似文献   

7.
Microcystis aeruginosa, a cosmopolitan form, is a colonial cyanobacterium, which is also common in many freshwater bodies in Mexico. In eutrophic water bodies cyanobacteria are often the main phytoplankton that co-exist with cladocerans. We evaluated the effect of mixed diets, comprising 0, 25, 50, 75, and 100% on dry weight basis of M. aeruginosa, and the rest of one of two green algal species (Chlorella vulgaris and Scenedesmus acutus), on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Regardless of the share of M. aeruginosa in the mixed diet, C. dubia fed Chlorella had a longer initial lag phase. However, in mixed diet with S. acutus, the lag phase of C. dubia increased with increasing proportion of M. aeruginosa. When raised on 100% M. aeruginosa, the population growth of C. dubia was lowered compared with 100% S. acutus or 100% C. vulgaris. Increased proportion of M. aeruginosa in the mixed diet also resulted in decreased abundance of M. macrocopa. Irrespective of diet type, M. macrocopa had a shorter lag phase than C. dubia. Depending on the diet type, the rate of population increase (r) of C. dubia varied from 0.07 to 0.26 d−1 while that of M. macrocopa was higher (0.14–0.61 d−1). For both cladoceran species, the lower r values were obtained when fed Microcystis. Our study showed that the strain of M. aeruginosa was not highly toxic to cause total elimination of either C. dubia or M. macrocopa. Addition of a green algal component to the diet improved the population growth rates of both cladoceran species.  相似文献   

8.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

9.
The present study was undertaken to investigate the possible inhibition of growth in Pseudomonas aeruginosa by interfering with its iron-uptake mechanism. Cobalt was employed as a possible competitive inhibitor of iron-uptake because of its similar size. The results indicate that cobalt competes effectively with iron for uptake by the bacterial cells and interference with iron-uptake could provide an effective means for inhibiting growth in P. aeruginosa.  相似文献   

10.
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillus thuringiensis strain Israelis as well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.  相似文献   

11.
During stationary phase of growth under low stress of iron in succinic acid medium, Alcaligenes feacalis BCCM ID 2374 produced microbial iron chelators. Increase in iron concentration supported bacterial growth but suppressed siderophores production, 1 μM and 2 μM of iron was optimum for maximum siderophore yield, i.e. 354 and 360 μg/ml in untreated and deferrated medium, respectively. Threshold level of iron, which suppressed siderophores production in A. feacalis BCCM ID 2374, was 20 μM. Ten micromoles and above concentration of CuCl2 and CoCl2, and 20 μM of MgCl2, MgSO4, ZnCl2 and ZnSO4 severely affected siderophores production.  相似文献   

12.
In recent times, the treatment of harmful algal blooms (HABs) became an important environmental issue to preserve and remediate water resources globally. In the present study, the adsorptive removal of harmful algal species Microcystis aeruginosa directly from an aqueous medium was attempted. Waste biomass (Escherichia coli) was immobilized using polysulfone and coated using the cationic polymer polyethylenimine (PEI) to generate PEI-coated polysulfone-biomass composite fiber (PEI-PSBF). The density of M. aeruginosa in an aqueous medium (BG11) was significantly decreased by treatment with PEI-PSBF. additionally, analysis using FE-SEM, confirmed that the removal of M. aeruginosa algal cells by PEI-PSBF was caused by the adsorption mechanism. According to the profiles of phosphorus for the algal cell growth in M. aeruginosa cultivating samples, we found that the adsorbed M. aeruginosa onto the PEI-PSBF lost their biological activity compared to the non-treated M. aeruginosa cells.  相似文献   

13.
14.
15.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

16.
Anthracnose, caused by the fungus Colletotrichum acutatum is one of the most important diseases in strawberry crop. Due to environmental pollution and resistance produced by chemical fungicides, nowadays biological control is considered a good alternative for crop protection. Among biocontrol agents, there are plant growth-promoting bacteria, such as members of the genus Azospirillum. In this work, we demonstrate that under iron limiting conditions different strains of A. brasilense produce siderophores, exhibiting different yields and rates of production according to their origin. Chemical assays revealed that strains REC2 and REC3 secrete catechol type siderophores, including salicylic acid, detected by thin layer chromatography coupled with fluorescence spectroscopy and gas chromatography–mass spectrometry analysis. Siderophores produced by them showed in vitro antifungal activity against C. acutatum M11. Furthermore, this latter coincided with results obtained from phytopathological tests performed in planta, where a reduction of anthracnose symptoms on strawberry plants previously inoculated with A. brasilense was observed. These outcomes suggest that some strains of A. brasilense could act as biocontrol agent preventing anthracnose disease in strawberry.  相似文献   

17.
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved β-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.  相似文献   

18.
Mycobacterium tuberculosis, the causative agent of human tuberculosis, synthesizes and secretes siderophores in order to compete for iron (an essential micronutrient). Successful iron acquisition allows M. tuberculosis to survive and proliferate under the iron-deficient conditions encountered in the host. To examine structural determinants important for iron siderophore transport in this pathogen, the citrate-based siderophores petrobactin, acinetoferrin and various acinetoferrin homologs were synthesized and used as iron transport probes. Mutant strains of M. tuberculosis deficient in native siderophore synthesis or transport were utilized to better understand the mechanisms involved in iron delivery via the synthetic siderophores. Acinetoferrin and its derivatives, especially those containing a cyclic imide group, were able to deliver iron or gallium into M. tuberculosis which promoted or inhibited, respectively, the growth of this pathogen. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron.  相似文献   

20.
Biological control of wilt of egg plant (Solanum melongena L.) caused by Fusarium solani was made with the application of five Trichoderma species, T. harzianum, T. viride, T. lignorum, T. hamatum and T. reesei. The effect of volatile and non-volatile antibiotics of Trichoderma origin on growth inhibition of the wilt pathogen was studied. T. harzianum showed maximum growth inhibition (86.44 %) of the pathogen through mycoparasitism. The non-volatiles produced by the Trichoderma species exhibited 100 % growth inhibition of the pathogen under in vitro condition. Production of siderophores and fungal cell wall degrading enzymes, chitinase and β-1,3-glucanase were found. Treatments with two most efficient Trichoderma species, T. harzianum and T. viride resulted in the decreasing population of Fusarium solani in soil thereby deterring disease incidence in field condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号