首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process.  相似文献   

2.
Summary In wheat, plants may be regenerated from microspores via direct embryogenesis or organogenesis or embryogenesis from callus. Light and scanning electron microscopy were used to carefully study morphogenesis of microspore-derived plants from anther culture on modified 85D12 starch medium and to determine whether the plants were formed via organogenesis or embryogenesis. Our results indicate that plants are formed via embryogenesis from microspores. Evidence for embryogenesis included the formation of the epidermis and a suspensorlike structure (21 days after culture), followed by initiation of an apical meristem, differentiation of the scutellum, and embryo elongation. At 28 days in culture, the embryo possessed a well-developed scutellum and axis with suspensor. Embryogenesis was further confirmed by coleoptile and radicle elongation during germination when the embryos were cultured on medium supplemented with kinetin with or without coconut water. In this system, an average 67 microspores per responsive anther began cell division but only 3.69 embryos were formed per responsive anther after 6 wk. Adventitious embryos could be induced if the embryos, once formed, remained on initiation medium for 10 wk instead of being transferred to regeneration medium. Developmental stages which may be amenable to changes that could enhance plant production were identified. The potential to use this information to enhance plant production is discussed.  相似文献   

3.
The highly conserved family of 14-3-3 proteins function in the regulation of a wide variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 suggest functional isoform specificity of 14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed differences in affinity and functionality of 14-3-3 isoforms. However, the structural variation by which isoform specificity is accomplished remains unclear. Because other reports suggest that specificity is found in differential expression and availability of 14-3-3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in barley. Further, using site directed mutagenesis, we identified a single amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity. Using surface plasmon resonance, we show that the ability of 14-3-3A and the mutated version to inhibit NR activity correlates well with their binding affinity for the 14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand discrimination. These results suggest that both the availability of 14-3-3 isoforms as well as binding affinity determine isoform-specific regulation of NR activity.  相似文献   

4.
Influence of auxin on the establishment of bilateral symmetry in monocots   总被引:5,自引:0,他引:5  
To study the influence of auxin on the shift from radial to bilateral symmetry during monocot embryogenesis, the fate of young wheat (Triticum aestivum L.) zygotic embryos has been manipulated in vitro by adding auxins, an auxin transport inhibitor and an auxin antagonist to the culture medium. The two synthetic auxins used, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), induced identical phenotypes. In the most severe cases, the shift from radial to bilateral symmetry was blocked resulting in continuous uniform radial growth. The natural auxin indole-3-acetic acid (IAA) induced the same phenotype. The effect of 2,4,5-T and 2,4D depended on their concentrations and on the developmental stage of the isolated embryos. In the presence of 2,3,5-triiodobenzoic acid (TIBA), an auxin transport inhibitor, the overall embryo symmetry was abnormal. The relative position of the shoot apical meristem in comparison with the scutellum was anomalous. The quality of shoot apical meristem and the scutellum differentiation was altered compared with normal developed embryos. No root meristem was differentiated. The effect of TIBA depends on its concentration and on the developmental stage of the isolated embryos. By contrast, 2-(pchlorophenoxy)-2-methylpropionic acid (PCIB) which is described as an auxin antagonist, has no visible direct effect on the embryonic symmetry. These observations indicate that auxin influences the change from radial symmetry to embryonic polarity during monocot embryogenesis. A model of auxin action during early wheat embryo development is proposed.  相似文献   

5.
Expression and post-translational modification of barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C, were investigated using isoform-specific antibodies. Although all three isoforms were shown to be present in the cytosolic, the nuclear and the microsomal cell fractions, differences in post-translational modification were identified for the different cell fractions. Germination-related modifications of 14-3-3 proteins were observed in the cytosol and the microsomal fraction, but not in the nucleus. In vitro proteolytic cleavage of 14-3-3 proteins using trypsin suggests that for 14-3-3A this change was caused by proteolytic cleavage of the unconserved C-terminal region.  相似文献   

6.
7.
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.  相似文献   

8.
Formation and maintenance of the shoot apical meristem   总被引:16,自引:0,他引:16  
Development in higher plants is characterized by the reiterative formation of lateral organs from the flanks of shoot apical meristems. Because organs are produced continuously throughout the life cycle, the shoot apical meristem must maintain a pluripotent stem cell population. These two tasks are accomplished within separate functional domains of the apical meristem. These functional domains develop gradually during embryogenesis. Subsequently, communication among cells within the shoot apical meristem and between the shoot apical meristem and the incipient lateral organs is needed to maintain the functional domains within the shoot apical meristem.  相似文献   

9.
The culture response of isolated microspores of seven recalcitrant cultivars of barley has been largely improved by identifying an appropriate pretreatment and utilizing ovary co-cultivation. After comparison of three pretreatment media, medium B was shown to be most efficient for inducing microspore embryogenesis, while 0.3 M mannitol frequently used for the responsive cv. Igri was found to be ineffective for recalcitrant genotypes. A further significant improvement of embryogenesis was achieved by using ovary co-culture, which resulted in an overall 2.1-fold increase in embryo formation and 2.4-fold increase in green plant regeneration from all cultivars compared with the control. Optimal co-culture conditions were identified as 5 ovaries/ml medium kept over 20 days in induction culture. Microspore plating densities in cultures with and without co-culture were found to be optimal at 4᎒4/ml and 8-12᎒4/ml, respectively. The most effective and reproducible method for culturing microspores of recalcitrant genotypes appeared to be the combination of medium B pretreatment with ovary co-culture. By using this procedure, the genotypic difference in microspore embryogenesis could be reduced. It was found that medium B mainly enhanced percent live embryogenic microspores, and ovary co-culture subsequently improved cell division and embryogenic development. The method described here is important for the application of the microspore culture technique to barley breeding and biotechnology.  相似文献   

10.
Summary This study compares the development of shoot apical meristems of white spruce somatic and zygotic embryos during germination. In mature somatic embryos, the functional part of the shoot apical meristem was bi-layered. After partial drying, a normal shoot meristem was formed from these two cell layers during germination. Other cells within the meristem were vacuolated and separated by intercellular air spaces. In the absence of the partial drying treatment, somatic embryos enlarged in size primarily due to vacuolation of cells and the formation of large intercellular air spaces. A majority of these somatic embryos failed to form a functional shoot apical meristem. Compared with somatic embryos, the shoot apical meristem of a mature zygotic embryo was well organized with a densely cytoplasmic apical layer. The cells within the meristem were tightly packed. Judging from the cell profiles during germination, all cells within the meristem of the zygotic embryo took part in the formation of the vegetative shoot apical meristem.  相似文献   

11.
Flow cytometry can be used to select and sort microspore subpopulations of Brassica napus cv. Topas. Data obtained from embryogenic microspore populations were used to identify potentially embryogenic microspores from developmentally heterogeneous microspore populations based on differences in forward light scatter and green autofluorescence. Culture enrichment for embryogenic microspores is possible. Frequencies of 8 and 14% microspore embryogenesis were obtained when selected 16 h and 72 h after culture initiation. This represents 5- and 13-fold increase in microspore embryogenesis compared to non-sorted controls.  相似文献   

12.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

13.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

14.
15.
Isolated microspores of B. napus in culture change their developmental pathway from gametophytic to sporophytic and form embryo-like structures (ELS) upon prolonged heat shock treatment (5 days at 32 °C). ELS express polarity during the initial days of endosporic development. In this study, we focussed on the analysis of polarity development of ELS without suspensor. Fluorescence microscopy and 3-D confocal laser scanning microscopy (CLSM) without tissue interfering enabled us to get a good insight in the distribution of nuclei, mitochondria and endoplasmic reticulum (ER), the architecture of microtubular (MT) cytoskeleton and the places of 5-bromo-2′-deoxy-uridine (BrdU) incorporation in successive stages of microspore embryogenesis. Scanning electron microscopy (SEM) analysis revealed, for the first time, the appearance of a fibrillar extracellular matrix-like structure (ECM-like structure) in androgenic embryos without suspensor. Two types of endosporic development were distinguished based upon the initial location of the microspore nucleus. The polarity of dividing and growing cells was recognized by the differential distributions of organelles, by the organization of the MT cytoskeleton and by the visualization of DNA synthesis in the cell cycle. The directional location of nuclei, ER, mitochondria and starch grains in relation to the MTs configurations were early polarity indicators. Both exine rupture and ECM-like structure on the outer surfaces of ELS are supposed to stabilize ELS's morphological polarity. As the role of cell polarity during early endosporic microspore embryogenesis in apical–basal cell fate determination remains unclear, microspore culture system provides a powerful in vitro tool for studying the developmental processes that take place during the earliest stages of plant embryogenesis.  相似文献   

16.
植物LEC蛋白是NF-Y转录因子的一类B亚基,在植物胚状体形成过程中起重要作用。为了研究大麦小孢子体外培养形成胚状体的机理,本研究利用RACE技术在大麦中克隆了一个新的LEC基因,该基因cDNA全长为1004 bp,开放阅读框全长为597 bp,编码198个氨基酸,其蛋白1~59位氨基酸含有LEC结构域,命名为HvLEC1。HvLEC1在大麦的根、茎、叶和小孢子培养过程中均能表达,其中小孢子培养7 d时表达量最高,且HvLEC1在大麦品系BI04中的表达量比基19高,BI04愈伤产量也比基19高,表明HvLEC1表达量和愈伤产量有相关性,受盐胁迫后HvLEC1在大麦的根中快速上调表达,提示HvLEC1可能不仅参与小孢子胚状体发生,而且参与盐胁迫响应。  相似文献   

17.
A simple procedure is described for the mechanical isolation of protoplasts of unfertilized and fertilized barley egg cells from dissected ovules. Viable protoplasts were isolated from ~75% of the dissected ovules. Unfertilized protoplasts did not divide, whereas almost all fertilized protoplasts developed into microcalli. These degenerated when grown in medium only. When cocultivated with barley microspores undergoing microspore embryogenesis, the protoplasts of the fertilized egg cells developed into embryo-like structures that gave rise to fully fertile plants. On average, 75% of cocultivated protoplasts of fertilized egg cells developed into embryo-like structures. Fully fertile plants were regenerated from ~50% of the embryo-like structures. The isolation-regeneration techniques may be largely genotype independent, because similar frequencies were obtained in two different barley varieties with very different performance in anther and microspore culture. Protoplasts of unfertilized and fertilized eggs of wheat were isolated by the same procedure, and a fully fertile wheat plant was regenerated by cocultivation with barley microspores.  相似文献   

18.
The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumental in the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells. The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by highthroughput techniques, bioinformatics, structural genomics and chemical genomics and point out that integrating the information with molecular dynamics(MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.  相似文献   

19.
The effects of two auxin polar transport inhibitors, N-1-naphthylphthalamic acid (NPA) and 3,3[prime],4[prime],5,7-pentahydroxyflavone (quercetin), on attaining bilateral symmetry from radial symmetry during early wheat embryogenesis were investigated by using an in vitro culture system. Although NPA and quercetin belong to two different classes of auxin transport inhibitors, the phytotropins and the flavonoids, respectively, they induced the same specific abnormal phenotypes during embryo development. These abnormal embryos differentiated multiple meristems (i.e., multiple shoot and root meristems) and multiple organs (i.e., multiple coleoptiles and scutella). Multiple shoot apical meristem phenotypes were characterized by partly multiplied embryonic axes and supernumerary scutella. The differentiation of multiple primary roots in addition to multiple shoot meristems and multiple scutella led to the formation of polyembryos. The occurrence of multiple shoot meristem phenotypes depended on the concentration of the inhibitor and the developmental stage of the isolated embryo. Embryos treated with NPA or quercetin developed multiple radicle phenotypes less frequently than they developed multiple shoot meristem phenotypes. Our observations suggest that the root meristem differentiates later than the shoot meristem. Our data support the hypothesis that polar transport of auxin has a determining influence on the differentiation of the embryonic axis and the scutellum.  相似文献   

20.
The production of doubled haploid (DH) plants from microspores is an important technique used in plant breeding programs and basic research. Although doubled haploidy efficiencies in wheat and barley are sufficient for breeding purposes, oat (Avena sativa L.) is considered recalcitrant. The objective of this project was to develop a protocol for the production of microspore-derived embryos of oat and further develop these embryos into fertile DH plants. A number of experiments were conducted evaluating the factors influencing microspore embryogenesis, i.e. donor plant conditions, pretreatments, media composition, and culture conditions. The initial studies yielded little response, and it was not until high microspore densities (106 microspores/mL and greater) were used that embryogenesis was achieved. Depending on the treatment, yields of over 5,000 embryos/106 microspores were obtained for breeding line 2000QiON43. The doubled haploidy protocol includes: a 0.3 M mannitol pretreatment of the tillers for 7 days, culture in W14 basal medium with a pH of 6.5–7.5, a microspore density of 106 microspores/mL, and continuous incubation at 28 °C incubation. The resulting embryos observed after 28 days were plated onto solidified W14 medium with 0.8 or 1.0 g/L activated charcoal. A colchicine treatment of 0.2 % colchicine for 4 h resulted in conversion of 80 % of the plants from haploid to DH. This protocol was successful for the production of oat microspore-derived embryos and DH green plants with minimal albinism. DH seed was produced and planted for evaluation in a field nursery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号