首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exposure of the human body to microgravity, conditions that occurs during space flights, causes significant changes in the cardiovascular system. Many cell types have been involved in these changes, and the endothelium seems to play a major role. In endothelial cells (EC), it has been shown that modeled low gravity impairs nitric oxide synthesis, cell adhesion, extracellular matrix composition, cytoskeleton organization, cytokines, and growth factors secretion. Nevertheless, detailed analysis of EC physiological changes induced by microgravity exposure is still lacking. Secretome analysis is one of the most promising approaches for the identification of biomarkers directly related to the physiopathological cellular state. In this study, we analyzed in details the modifications of EC secretome by using umbilical vein endothelial (HUVE) cells exposed to modeled low gravity conditions. By adopting a two‐dimensional (2‐D) proteomic approach, in conjunction with a technique for the compression of the dynamic range of proteins, we observed that modeled low gravity exposure of HUVE cells affected the secretion of proteins involved in the regulation of cytoskeleton assembly. Moreover, by using Luminex® suspension array systems, we found that the low gravity condition decreased in ECs the secretion of some key pro‐inflammatory cytokines, including IL‐1α and IL‐8, and of the pro‐angiogenic factor bFGF. On the contrary, microgravity increase the secretion of two chemokines (Rantes and Eotaxin), involved in leukocytes recruitment. J. Cell. Biochem. 112: 265–272, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
F Shi  YC Wang  TZ Zhao  S Zhang  TY Du  CB Yang  YH Li  XQ Sun 《PloS one》2012,7(7):e40365
Endothelial cells are very sensitive to microgravity and the morphological and functional changes in endothelial cells are believed to be at the basis of weightlessness-induced cardiovascular deconditioning. It has been shown that the proliferation, migration, and morphological differentiation of endothelial cells play critical roles in angiogenesis. However, the influence of microgravity on the ability of endothelial cells to foster angiogenesis remains to be explored in detail. In the present study, we used a clinostat to simulate microgravity, and we observed tube formation, migration, and expression of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC-C). Specific inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) were added to the culture medium and gravity-induced changes in the pathways that mediate angiogenesis were investigated. After 24 h of exposure to simulated microgravity, HUVEC-C tube formation and migration were significantly promoted.This was reversed by co-incubation with the specific inhibitor of N-nitro-L-arginine methyl ester hydrochloride (eNOS). Immunofluorescence assay, RT-PCR, and Western blot analysis demonstrated that eNOS expression in the HUVEC-C was significantly elevated after simulated microgravity exhibition. Ultrastructure observation via transmission electron microscope showed the number of caveolae organelles in the membrane of HUVEC-C to be significantly reduced. This was correlated with enhanced eNOS activity. Western blot analysis then showed that phosphorylation of eNOS and serine/threonine kinase (Akt) were both up-regulated after exposure to simulated microgravity. However, the specific inhibitor of PI3K not only significantly downregulated the expression of phosphorylated Akt, but also downregulated the phosphorylation of eNOS. This suggested that the PI3K-Akt signal pathway might participate in modulating the activity of eNOS. In conclusion, the present study indicates that 24 h of exposure to simulated microgravity promote angiogenesis among HUVEC-C and that this process is mediated through the PI3K-Akt-eNOS signal pathway.  相似文献   

3.
Caveolae and its structural protein caveolin-1 (Cav-1) are abundant in vascular endothelial cells (ECs) and have been suggested to contribute to cell signaling and cholesterol trafficking. This study investigated the effect of cholesterol on the movement of caveolae-related proteins in human umbilical vein ECs with use of caveolae functional proteomics. After cholesterol exposure to ECs for 2 to 4 h, caveolae were isolated and separated on 2-D protein gels. Among 40 protein spots revealed in caveolae fractions, the ATP synthase beta subunit (ATPS-beta), one of the 3 proteins enriched by cholesterol in caveolae, was confirmed by western blotting and confocal microscopy. Further, cholesterol exposure increased the level of ATPS-beta, along with Cav-1 and cholesterol in caveolae. These effects could be blocked by cytochalasin B, an actin cytoskeleton disruptor. ATPS-beta was physically associated with Cav-1, as demonstrated by co-immunoprecipitation and GST-Cav-1 fusion protein pull-down assay. Cholesterol increased the extracellular ATP release mediated by ATPS-beta, since this action could be blocked by piceatannol or oligomycin, ATPS inhibitors. Thus, the ectopic localization of ATPS-beta may participate in the energy balance of cells in response to the change in intracellular cholesterol levels.  相似文献   

4.
Caveolae and its structural protein caveolin-1 (Cav-1) are abundant in vascular endothelial cells (ECs). We examined whether caveolae are involved in monocyte adhesion to ECs responding to a synergy of hypercholesterolemia and inflammation. Treating human umbilical vein ECs with cholesterol enhanced endotoxin lipopolysaccharide (LPS)-induced monocyte adhesion. Use of isolated caveolae-enriched membranes revealed that cell adhesion molecules (CAMs), including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), co-localized with Cav-1 in caveolae. LPS upregulated CAMs expression and increased the co-localization. Cholesterol exposure decreased the level of CAMs in the caveolae. Co-immunoprecipitation and confocal microscopy revealed that ICAM-1 interacted with Cav-1. Electron microscopy showed that ICAM-1 was mainly located in caveolae. Cholesterol exposure decreased this interaction and drove ICAM-1 out of caveolae. Knockdown of Cav-1 reduced the synergistic effects of cholesterol and inflammation. In vivo, ICAM-1 and Cav-1 co-localization was lower in the aortic endothelium of ApoE/ mice than in that of wild-type controls. Cav-1 negatively regulates monocyte adhesion by the co-localization of CAMs in caveolae, which is disturbed by cholesterol. Thus, our study suggests a molecular basis underlying the synergistic effects of hypercholesterolemia and inflammation in atherogenesis.  相似文献   

5.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   

6.
Wang ZH  Hu QH  Zhong H  Deng FM  He F 《生理学报》2011,63(1):39-47
为了探讨小凹蛋白-1(caveolin-1,Cav-1)在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)细胞外钙敏感受体(extracellular Ca2+-sensing receptor,CaR)介导Ca2+内流中的作用,本实验研究了细胞膜穴样凹陷(caveolae)结构破坏剂Filipin或Cav-1基因沉默后对CaR介导Ca2+内流的影响。Fura-2/AM负载检测细胞内Ca2+浓度(intracellular Ca2+ concentration,[Ca2+]i)。结果显示,HUVECs中CaR对不同浓度细胞外Ca2+刺激无反应。无论细胞外为零钙液或含钙液时,精胺(Spermine,2mmol/L)刺激CaR时均引起[Ca2+]i升高(P<0.05),其中细胞外液为含钙液时,[Ca2+]i升高较细胞外为零钙液时更明显(P<0.05),CaR的负性变构调节剂Calhex231(1μmol/L)均可完全阻断Spermine刺激引起的[Ca2+]i升高(P<0.05);相反,Spermine升高[Ca2+]i作用可被Filipin(1.5μ...  相似文献   

7.
A variety of evidence suggests that endothelial cell functions are impaired in altered gravity conditions. Nevertheless, the effects of hypergravity on endothelial cell physiology remain unclear. In this study we cultured primary human endothelial cells under mild hypergravity conditions for 24-48 h, then we evaluated the changes in cell cycle progression, caveolin1 gene expression and in the caveolae status by confocal microscopy. Moreover, we analyzed the activity of enzymes known to be resident in caveolae such as endothelial nitric oxide synthase (eNOS), cycloxygenase 2 (COX-2), and prostacyclin synthase (PGIS). Finally, we performed a three-dimensional in vitro collagen gel test to evaluate the modification of the angiogenic responses. Results indicate that hypergravity shifts endothelial cells to G(0)/G(1) phase of cell cycle, reducing S phase, increasing caveolin1 gene expression and causing an increased distribution of caveolae in the cell interior. Hypergravity also increases COX-2 expression, nitric oxide (NO) and prostacyclin (PGI2) production, and inhibits angiogenesis as evaluated by 3-D collagen gel test, through a pathway not involving apoptosis. Thus, endothelial cell caveolae may be responsible for adaptation of endothelium to hypergravity and the mechanism of adaptation involves an increased caveolin1 gene expression coupled to upregulation of vasodilators as NO and PGI2.  相似文献   

8.
Various cellular signals initiate calcium entry into cells, and there is evidence that lipid rafts and caveolae may concentrate proteins that regulate transmembrane calcium fluxes. Here, using mice deficient in caveolin-1 (Cav-1) and Cav-1 knock-out reconstituted with endothelium-specific Cav-1, we show that Cav-1 is essential for calcium entry in endothelial cells and governs the localization and protein-protein interactions between transient receptor channels C4 and C1. Thus, Cav-1 is required for calcium entry in vascular endothelial cells and perhaps other specialized cell types containing caveolae.  相似文献   

9.
Although angiogenesis is crucial for tumor growth and metastasis, the molecular mechanisms controlling this process are not clearly understood. Here, we explore the role of Dab2 in tumor angiogenesis. We found that Dab2 is expressed in several cancer cells, including A549 lung cancer cells, but it is hardly detectable in SW480 colon cancer cells. Migration and Erk phosphorylation were enhanced in human umbilical vein endothelial cells (HUVECs) treated with the conditioned medium obtained from Dab2-overexpressing SW480 stable cells. In addition, vascular endothelial growth factor (VEGF) protein was strongly detected in conditioned medium derived from Dab2-overexpressing SW480 cells, and Erk phosphorylation enhanced by Dab2(+) CM was restored by VEGF inhibition. Moreover, Dab2 depletion in A549 cells led to a decrease in HUVEC migration and Erk phosphorylation. Furthermore, we show that Dab2 is required for the TGFβ-induced gene expression of angiogenic factors such as VEGF and FGF2. Taken together, these results suggest that Dab2, which is expressed in cancer cells, is pivotal for endothelial cell migration by affecting VEGF expression.  相似文献   

10.
Eukaryotic organisms are influenced by gravitational forces in their environment. The low gravitational forces endured by organisms in space alter cellular processes in cultured mammalian cells. Endothelial cells represent an interesting model to study because of their crucial role in the pathogenesis of various diseases, from atherosclerosis to inflammation to any situation characterized by dysregulated angiogenesis. We therefore cultured human endothelial cells derived from the umbilical vein in Rotating Wall Vessels (RWV) that simulate microgravity on earth. Under these experimental conditions, cells are viable and no increase in apoptotic rate was observed. They grow reproducibly faster than controls up to 8 days from seeding. Because endothelial proliferation is crucial in angiogenesis, we evaluated other steps required for new blood vessels to form. We found no variations in the levels of metalloproteases and an increased synthesis of their inhibitors (TIMP), suggesting that hypogravity does not induce a pro-angiogenic phenotype. Since i) alterations of blood pressure have been observed in astronauts and ii) endothelial cell synthesize vasoactive molecules, we evaluated the synthesis of nitric oxide and prostacyclin, both potent vasodilators and inhibitors of platelet aggregation. We observed that human endothelial cells grown in hypogavity synthesize higher amounts of prostacyclin and nitric oxide than controls. More studies are ongoing to understand the molecular basis of these events and their role in altering the physiology of the vascular tree.  相似文献   

11.
The significance of endothelial nitric oxide synthase 3 (NOS3) activity has been recognized for many years, however it was only recently that the complicated regulation of this constitutively expressed enzyme in endothelial cells was identified. A critical component of the NOS3 regulatory cyde in endothelial cells is its intracellnlar localization to caveolae. The caveolar coordination of NOS3, more specifically its interaction with caveolin-1 (Cav-1), plays a major role in normal endothelial NOS3 activity and vascular bioavailability of nitric oxide. We have recently shown that the presence of NOS3 exon 7 Glu298Asp polymorphism caused diminished shear-dependent NOS activation, was less extensively associated with caveolae, and had a decreased degree of interaction with Cav-1. Here, we carried out preliminary investigations to identify possible mechanisms of the genotype-dependent endothelial cell responses we observed in our previous investigations. Through this approach we tested the hypothesis that computer simulations could provide insights regarding the contribution of this single nucleotide polymorphism to regulation of the NOS3 isoform. We observed that in the Glu/Asp and Asp/Asp mutant genotypes, the amount of NOS3 associated with Cav-1 was significantly lower. Additionally, we have shown, using a theoretical computational model, that mutation of an amino acid at position 298 might affect the protein-protein interactions and localization of the NOS3 protein. These alterations might also affect the protein function and explain the enhanced disease risk associated with the presence of Glu298Asp polymorphism in the NOS3 protein.  相似文献   

12.
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the role of caveolin-1 in PCB-induced endothelial dysfunction with a focus on mechanisms associated with eNOS signaling. Cells derived from an immortalized human vascular endothelial cell line were treated with PCB77 to study nitrotyrosine formation through eNOS signaling. Phosphorylation studies of eNOS, caveolin-1, and kinases, such as Src, phosphatidylinositol 3-kinase (PI3K), and Akt, were conducted in cells containing either functional or small-interfering RNA-silenced caveolin-1 protein. We also investigated caveolin-1-regulated mechanisms associated with PCB-induced markers of peroxynitrite formation and DNA binding of NF-kappaB. Cellular exposure to PCB77 increased eNOS phosphorylation and nitric oxide production, as well as peroxynitrite levels. A subsequent PCB-induced increase in NF-kappaB DNA binding may have implications in oxidative stress-mediated inflammatory mechanisms. The activation of eNOS by PCB77 treatment was blocked by inhibitors of the Src/PI3K/Akt pathway. PCB77 also increased phosphorylation of caveolin-1, indicating caveolae-dependent endocytosis. Caveolin-1 silencing abolished both the PCB-stimulated Akt and eNOS phosphorylation, suggesting a regulatory role of caveolae in PCB-induced eNOS signaling. These findings suggest that PCB77 induces eNOS phosphorylation in endothelial cells through a Src/PI3K/Akt-dependent mechanism, events regulated by functional caveolin-1. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and toxicity induced by persistent environmental pollutants such as coplanar PCBs.  相似文献   

13.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   

14.
15.
The role of endothelial cell caveolae in the uptake and transport of macromolecules from the blood-space to the tissue-space remains controversial. To address this issue directly, we employed caveolin-1 gene knock-out mice that lack caveolin-1 protein expression and caveolae organelles. Here, we show that endothelial cell caveolae are required for the efficient uptake and transport of a known caveolar ligand, i.e. albumin, in vivo. Caveolin-1-null mice were perfused with 5-nm gold-conjugated albumin, and its uptake was followed by transmission electron microscopy. Our results indicate that gold-conjugated albumin is not endocytosed by Cav-1-deficient lung endothelial cells and remains in the blood vessel lumen; in contrast, gold-conjugated albumin was concentrated and internalized by lung endothelial cell caveolae in wild-type mice, as expected. To quantitate this defect in uptake, we next studied the endocytosis of radioiodinated albumin using aortic ring segments from wild-type and Cav-1-null mice. Interestingly, little or no uptake of radioiodinated albumin was observed in the aortic segments from Cav-1-deficient mice, whereas aortic segments from wild-type mice showed robust uptake that was time- and temperature-dependent and competed by unlabeled albumin. We conclude that endothelial cell caveolae are required for the efficient uptake and transport of albumin from the blood to the interstitium.  相似文献   

16.
Microvascular endothelial cells are protagonists in inflammation and angiogenesis. They contribute to the integrity of microvasculature by synthesizing a large array of cytokines, growth factors and mediators active on the endothelium itself, on smooth muscle cells and circulating leukocytes. Because space flight (i) associates with vascular impairment and (ii) modulates the cytokine network, we evaluated the effect of modeled microgravity on microvascular 1G11 cells. We found that modeled microgravity reversibly inhibits endothelial growth and this correlates with an upregulation of p21, a cyclin-dependent kinases inhibitor. By protein array, we found that microgravity inhibits the synthesis of interleukin 6, an event that may contribute to growth retardation. We also detected increased amounts of nitric oxide, a mediator of inflammatory responses, a potent vasodilator and a player in angiogenesis. The increased synthesis of nitric oxide is due, at least in part, to an upregulation of endothelial nitric oxide synthase. Because low levels of IL-6 might contribute to endothelial growth retardation as well as to the enhancement of nitric oxide synthesis, we hypothesize a central role of IL-6 in modulating microvascular endothelial cell behaviour in modeled microgravity.  相似文献   

17.
We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability.  相似文献   

18.
19.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, increases caveolae density, and leads to enhanced mechanosensitivity to subsequent changes in hemodynamic forces within cultured endothelial cells. Flow-preconditioned cells expressed a fivefold increase in caveolin (and other caveolar-residing proteins) at the luminal surface compared with no-flow controls. The density of morphologically identifiable caveolae was enhanced sixfold at the luminal cell surface of flow-conditioned cells. Laminar shear stress applied to static endothelial cultures (flow step of 5 dyn/cm2), enhanced the tyrosine phosphorylation of luminal surface proteins by 1.7-fold, including caveolin-1 by 1.3-fold, increased Ser1179 phosphorylation of endothelial nitric oxide synthase (eNOS) by 2.6-fold, and induced a 1.4-fold activation of mitogen-activated protein kinases (ERK1/2) over no-flow controls. The same shear step applied to endothelial cells preconditioned under 10 dyn/cm2 of laminar shear stress for 6 h and induced a sevenfold increase of total phosphotyrosine signal at the luminal endothelial cell surface enhanced caveolin-1 tyrosine phosphorylation 5.8-fold and eNOS phosphorylation by 3.3-fold over static control values. In addition, phosphorylated caveolin-1 and eNOS proteins were preferentially localized to caveolar microdomains. In contrast, ERK1/2 activation was not detected in conditioned cells after acute shear challenge. These data suggest that cultured endothelial cells respond to a sustained flow environment by directing caveolae to the cell surface where they serve to mediate, at least in part, mechanotransduction responses.  相似文献   

20.
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号