首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro studies have demonstrated that linear duplex, protein-free DNA molecules containing an inverted terminal repeat (ITR) sequence of the PRD1 genome at one end can undergo replication by a protein-primed mechanism. No DNA replication was observed when the ITR sequence was deleted or was not exposed at the terminus of the template DNA. We have determined the minimal origin of replication by analyzing the template activity of various deletion derivatives. Our results showed that the terminal 20 base-pairs of ITR are required for efficient in vitro DNA replication. We have found that, within the minimal replication origin region, there are complementary sequences. A site-specific mutagenesis analysis showed that most of the point mutations in the complementary sequences markedly reduced the template activity. The analyses of the results obtained with synthetic oligonucleotides have revealed that the specificity of the replication origin is strand specific and even on a single-stranded template a particular DNA sequence including a 3'-terminal C residue is required for the initiation of PRD1 DNA replication in vitro.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, a double-strand chromosome break created by the HO endonuclease is frequently repaired in mitotically growing cells by recombination between flanking homologous regions, producing a deletion. We showed that single-stranded regions were formed on both sides of the double-strand break prior to the formation of the product. The kinetics of the single-stranded DNA were monitored in strains with the recombination-deficient mutations rad52 and rad50 as well as in the wild-type strain. In rad50 mutants, single-stranded DNA was generated at a slower rate than in the wild type, whereas rad52 mutants generated single-stranded DNA at a faster rate. Product formation was largely blocked in the rad52 mutant. In the rad50 rad52 double mutant, the effects were superimposed in that the exonucleolytic activity was slowed but product formation was blocked. rad50 appears to act before or at the same stage as rad52. We constructed strains containing two ura3 segments on one side of the HO cut site and one ura3 region on the other side to characterize how flanking repeats find each other. Deletions formed preterentially between the homologous regions closest to the double-strand break. By varying the size of the middle ura3 segment, we determined that recombination initiated by a double-strand break requires a minimum homologous length between 63 and 89 bp. In these competition experiments, the frequency of recombination was dependent on the length of homology in an approximately linear manner.  相似文献   

3.
4.
5.
The 32.4-kb genome of the Haemophilus influenzae bacteriophage HP1c1 contains at least twelve sites, each conferring high affinity for the DNA uptake system of transformable H. influenzae Rd. Five of these high-affinity sites have been located and their nucleotide sequences determined. Three sites contained a contiguous 9-bp sequence identical to the first nine residues of the 11-bp site previously identified as conferring high affinity for the H. influenzae transformation receptor to DNA fragments. The remaining two sites contained complete 11-bp sequences. In contrast, an HP1c1 restriction fragment containing a sequence identical to the final nine residues of the 11-bp uptake site exhibits only a low affinity for the DNA uptake system. An 8-bp sequence consisting of the first eight residues of the 11-bp site was 1% as active as the longer, high-affinity sites. Thus the first 9-bp of the 11-bp site are sufficient to direct high-affinity uptake, while the first 8-bp or the distal 9-bp are not. These results provide an initial assessment of the relative contributions of the individual residues constituting the 11-bp site to the apparent affinity of DNA fragments for the receptor of Haemophilus transformation.  相似文献   

6.
7.
Majewski J  Cohan FM 《Genetics》1999,153(4):1525-1533
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5' and 3' ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.  相似文献   

8.
The termini of the mature DNA of phage HP1c1 of Haemophilus influenzae Rd have been characterized by DNA ligation, nucleotide sequencing, and deoxynucleotide incorporation experiments. A hybrid plasmid containing the joined phage termini (the cos site) inserted into pBR322 has been constructed. The phage DNA has cohesive termini composed of complementary 5' single-stranded extensions which are seven residues long. The left cohesive terminal extension consists only of pyrimidines and the right only of purines. When the ends of the phage are joined, the terminal sequences constitute the central 7 bp of an 11 bp sequence containing only purines on one strand and pyrimidines on the other strand. This oligopyrimidine/oligopurine sequence does not possess rotational symmetry. A 10-bp sequence and its inverted repeat are located approx. 20 bp to the left and right of the fused ends.  相似文献   

9.
10.
A recombination site in the transducing bacteriophage lambda plac5 DNA has been structurally elucidated. Comparison of primary structures of E. coli lac-operon (distal end of lacZ gene, Z-Y spacer, and proximal end of lacY gene) described earlier with corresponding segments of bacteriophages lambda CI857 and lambda plac 5-2 DNAs sequenced in this paper showed that the bacterial DNA insert ends immediately after Z-Y spacer, just before the initiating triplet ATG of lacY gene. It thus follows that in contrast to the earlier conception, the insert does not seem to include any part of lacY gene. The recombination sites in both phage and bacterial DNA contain structurally homological segments about 20 b. p. long (crossover region), with two extra basepairs in the bacterial DNA (AT in the sense-strand). We suppose that the very dinucleotide plays a substantial role in initiation of recombinational event: causing formation of a nonperfect heteroduplex structure, it determines the T-A internucleotide bond to be endonucleolytically cut (crossover point) followed by exonucleolytic elimination of the extra links (AT) and reciprocal strand exchange. The second recombination site in lambda plac5 DNA has been localized by us within lacI gene as being close to the HindII site (nucleotides 854 to 859 of the gene). The structures of the two regions of site-specific recombination may shed light upon mechanisms of the phage abnormal excision leading to formation of transducing phages.  相似文献   

11.
12.
13.
Abstract Bacteriophage P1 encodes the site-specific recombinase Cin which promotes inversion of the C segment, thus controlling the P1 host range. Cin can also mediate inefficient inversion between the normal crossover site cixL and a quasi-crossover site cixQ 1 in inverted orientation. Inversion between cixL and cixQ 1 occurs more frequently in a short period of time after transformation with a plasmid carrying the cin gene, cixL and cixQ 1 than in an established transformant of the plasmid. This is also the case for Cin-mediated deletion on a plasmid containing the cin gene and directly repeated cix sites.  相似文献   

14.
Dimeric circular duplex DNA of bacteriophage phiX174 and recombination   总被引:2,自引:0,他引:2  
Summary Bacteriophage X174 replicative from DNA (RF DNA) was formed in the presence of chloramphenicol at a concentration of 40 g per ml and isolated at 12 and at 55 min. after infection. The component I RF DNA (double stranded covalently closed and twisted form) was separated and divided into a monomer and multimer (dimer) fraction.The frequency of recombinants found after phage formation in the chloramphenicol treated cells and that found after spheroplast infection with the monomer molecules both increase with the time of RF formation. However, the frequency of recombinant molecules among the dimers remained constant. This finding is explained by the hypothesis that two separate mechanisms act in X174 recombination, one of which is restricted to the formation of dimers.Irradiation with UV of phage prior to infection showed that the frequency of recombinants in monomers increased, as the recombination frequency of phage after (a single) growth (step) did, but that neither the frequency of recombinant molecules in dimers is raised, nor the frequency of dimers. Using a recombination negative host the frequency of recombinant dimer molecules was three to fourfold decreased, whereas the frequency of dimers was only slightly lower (relative to the normal host). These results support the hypothesis mentioned above and moreover lend support to the view that the greater part of the dimers is not formed by recombination events.  相似文献   

15.
Bacteriophage T4 DNA replication initiates from origins at early times of infection and from recombinational intermediates as the infection progresses. Plasmids containing cloned T4 origins replicate during T4 infection, providing a model system for studying origin-dependent replication. In addition, recombination-dependent replication can be analyzed by using cloned nonorigin fragments of T4 DNA, which direct plasmid replication that requires phage-encoded recombination proteins. We have tested in vivo requirements for both plasmid replication model systems by infecting plasmid-containing cells with mutant phage. Replication of origin and nonorigin plasmids strictly required components of the T4 DNA polymerase holoenzyme complex. Recombination-dependent plasmid replication also strictly required the T4 single-stranded DNA-binding protein (gene product 32 [gp32]), and replication of origin-containing plasmids was greatly reduced by 32 amber mutations. gp32 is therefore important in both modes of replication. An amber mutation in gene 41, which encodes the replicative helicase of T4, reduced but did not eliminate both recombination- and origin-dependent plasmid replication. Therefore, gp41 may normally be utilized for replication of both plasmids but is apparently not required for either. An amber mutation in gene 61, which encodes the T4 RNA primase, did not eliminate either recombination- or origin-dependent plasmid replication. However, plasmid replication was severely delayed by the 61 amber mutation, suggesting that the protein may normally play an important, though nonessential, role in replication. We deleted gene 61 from the T4 genome to test whether the observed replication was due to residual gp61 in the amber mutant infection. The replication phenotype of the deletion mutant was identical to that of the amber mutant. Therefore, gp61 is not required for in vivo T4 replication. Furthermore, the deletion mutant is viable, demonstrating that the gp61 primase is not an essential T4 protein.  相似文献   

16.
Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination-mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.  相似文献   

17.
Plasmids were constructed which contain both attP and attB DNA segments derived from the insertion sites of the lysogenic bacteriophage HP1 and its host, Haemophilus influenzae. Similar plasmids containing the two junction segments (attL and attR regions) between the phage genome and the lysogenic host chromosome were also prepared. The formation of recombinant dimer plasmids was observed when attP-attB plasmids were propagated in Escherichia coli HB101 (recA), while plasmids containing the junction segments did not form recombinant dimers. Deletion of the phage DNA segment adjacent to the attP site from the attP-attB constructions eliminated detectable recombination, suggesting that this sequence contains the gene encoding the HP1 integrase. No plasmid recombination was observed in strains of E. coli defective in integration host factor. This suggests that integration host factor is important in the expression or activity of the system which produces the site-specific recombination of sequences derived from HP1 and H. influenzae. Further, it suggests that a protein functionally analogous to E. coli integration host factor may be present in H. influenzae.  相似文献   

18.
Site-specific DNA inversion in phage Mu is catalysed by the phage-encoded DNA invertase Gin and a host factor FIS. We demonstrate that purified Gin protein binds specifically to 34-bp sequences that flank the G segment as inverted repeats. Each inverted repeat (IR) contains two binding sites for Gin which have to be arranged in a specific configuration to constitute a recombinogenic site. While one of these sites is bound when present alone, the other site is bound only in conjunction with the first one, suggesting cooperative binding. In addition to the sites within the IR, Gin binds with lower affinity to AT-rich sequences adjacent to the IR. We demonstrate that these sites do not participate in the inversion reaction. The IR itself can be shortened to 25 bp without effect on inversion frequency. Using gel mobility shift experiments on circular permuted fragments containing the IR we show that Gin bends DNA upon binding. We discuss the possibility that DNA bending is related to the formation of a productive synaptic complex.  相似文献   

19.
The interaction between ribosomes of Bacillus stearothermophilus and the RNA genomes of R17 and Qβ bacteriophage has been studied. Whereas Escherichia coli ribosomes can initiate the synthesis of all three RNA phage-specific proteins in vitro, ribosomes of B. stearothermophilus were previously shown to recognize only the A (or maturation) protein initiation site of f2 or R17 RNA. Under these same conditions, a Qβ region is bound and protected from nuclease digestion. Qβ RNA, however, does not direct the synthesis of any formylmethionyl dipeptide in the presence of B. stearothermophilus ribosomes, nor does the binding of either this Qβ region or the R17 A protein initiation site to these ribosomes show the same fMet-tRNA requirement for recognition of initiator regions as that previously established with E. coli ribosomes. Analysis of a 38-nucleotide sequence in the protected Qβ region reveals no AUG or GUG initiator codon. These observations suggest that messenger RNA may be recognized and bound by B. stearothermophilus ribosomes quite independently of polypeptide chain initiation.Binding experiments using R17 RNA and mixtures of components from B. stearothermophilus and E. coli ribosomes confirm the conclusion drawn by Lodish (1970a) that specificity in the selection of authentic phage initiator regions by the two species resides in the ribosomal subunit(s). However, anomalous attachment of B. stearothermophilus ribosomes to R17 RNA, which is observed upon lowering the incubation temperature of the binding reaction, is clearly a property of the initiation factor fraction. The results are discussed with respect to current ideas on the role of ribosomes and initiation factors in determining the specificity of polypeptide chain initiation.  相似文献   

20.
An in vivo assay was used to define the DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis (G4 origin). This assay made use of an origin-cloning vector, mRZ1000, a defective M13 recombinant phage deleted for its natural origin of complementary-strand DNA synthesis. The minimal DNA sequence of the G4 genome sufficient for the restoration of normal M13 growth parameters was determined to be 139 bases long, located between positions 3868 and 4007. This G4-M13 construct was also found to give rise to proper initiation of complementary-strand synthesis in vitro. The cloned DNA sequence contains all the regions of potential secondary structure which have been implicated in primase-dependent replication initiation as well as additional sequence information. To address the role of one region which potentially forms a DNA secondary structure, the DNA sequence internal to the G4 origin was altered by site-directed mutagenesis. A 3-base insertion at the AvaII site as well as a 17-base deletion between the AvaI and AvaII sites both resulted in loss of origin function. The 17-base deletion was also generated within the G4 genome and found to dramatically reduce the infectious growth rate of the resulting phage. These results are discussed with respect to the role of the G4 origin as the recognition site for primase-dependent replication initiation and its possible role in stage II replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号