首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nonhydrolyzable G protein activator (guanosine 5'-O-(3-thiotriphosphate); GTPgammaS) and a G protein inhibitor (guanosine 5'-O-(2-thiodiphosphate); GDPbetaS) were introduced into the labellar taste receptor cells of the fleshfly by treatment of their receptive membranes beneath the tip opening of the chemosensory hair with each reagent in 0.03% deoxycholate solution for 4 min. After treatment with GTPgammaS, the responses of the sugar receptor cell to D-glucose, D-fructose, L-phenylalanine and L-valine and that of the salt receptor cell to cyclic AMP were markedly enhanced, compared with those after treatment with deoxycholate alone. Treatment with GDPbetaS depressed these responses. These results strongly suggest that the responses are mediated by G protein. However, the response of the salt receptor cell to NaCl was not affected by treatment with either GTPgammaS or GDPbetaS, and thus the response to NaCl clearly is not elicited through a G protein-regulated mechanism. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

2.
Receptor-mediated endocytosis via coated pits is modulated by the activity of protein kinases and protein phosphorylation. We examined the effects of the potent protein kinase inhibitor staurosporine (SSP) on endocytosis of the asialoglycoprotein (ASGP) receptor in HepG2 cells. Staurosporine caused a rapid (<2 min) inhibition of ligand internalization from the cell surface. In contrast the rate of receptor exocytosis from intracellular compartments to the cell surface was not altered (t1/2 = 8 min). This resulted in increased ASGP receptors at the plasma membrane (140% of control) while the total number of receptors per cell was unchanged. Receptor up-regulation was half-maximal at 30 nM SSP. At this concentration staurosporine also inhibited the internalization of iodinated transferrin by HepG2 cells and SK Hep-1 cells, another human hepatoma-derived cell line. Staurosporine was without effect on the non-receptor-mediated uptake of Lucifer yellow by pinocytosis. We investigated the possible involvement of protein kinase C in the inhibitory effects of staurosporine on receptor endocytosis. The active protein kinase C inhibitor H7 did not inhibit ASGP receptor internalization. Furthermore depletion of cellular protein kinase C by overnight incubation with 1 μM phorbol myristate acetate did not abrogate the SSP effect. Together these data suggest that the mechanism of SSP action is independent of the inhibition of protein kinase C. In conclusion staurosporine is a potent and rapid inhibitor of receptor trafficking which is specific for receptor internalization from the plasma membrane.  相似文献   

3.
The aim of the present paper is to evaluate the modulation of phosphatidate phosphohydrolase (PAPase) and diacylglyceride lipase (DGL) activities in bovine rod outer segment (ROS) under dark and light conditions and to evaluate the role of transducin (T) in this phenomenon. In dark-adapted ROS membranes exposed to light, PAPase activity is inhibited by 20% with respect to the activity found under dark conditions. To determine whether the retinal G protein, T, participates in the regulation of PAPase activity in these membranes, the effects of GTPgammaS and GDPbetaS on enzyme activity were examined. Under dark conditions in the presence of GTPgammaS, which stabilizes T in its active form (Talpha + Tbetagamma), enzyme activity was inhibited and approached control values under light conditions. GDPbetaS, on the other hand, which stabilizes the inactive state of T (Talphabetagamma), stimulated PAPase activity by 36% with respect to control light conditions. ADP-ribosylation by cholera and pertussis toxin was also studied. In ADP-rybosilated ROS membranes with pertussis toxin under dark conditions, PAPase activity was 36% higher than the activity found under control light conditions. ADP-ribosylation by CTx, on the other hand, inhibited PAPase activity by 22%, with respect to dark control conditions, mimicking light effect. The effects of GTPgammaS and GDPbetaS and conditions of ADP-ribosylation by PTx and CTx on DGL activity were similar to those of PAPase activities. Based on NEM sensitivity we have also demonstrated that the PAPase present in ROS is the PAP 2 isoform. Our findings therefore suggest that light inhibition of PAP 2 in ROS is a transducin-mediated mechanism.  相似文献   

4.
Using apical membrane vesicles (AMV) prepared from mature foetal and early neonatal guinea pig lung we show that pertussis toxin (PTX)-sensitive G-protein regulation of conductive 22Na+ uptake undergoes rapid changes following birth. Thus, G-protein activation by intravesicular incorporation of 100 microM GTPgammaS into vesicles resuspended in NaCl, which in late gestation stimulated uptake, consistently induced inhibition of conductive Na+ uptake into AMV prepared from neonatal lung at 4 days of age (N4) (52+/-9%, n=8, P<0.05). This response was not significantly different in the presence of the relatively impermeant anion isethionate (Ise-) (69+/-9%, n=7, P<0.05). Changes in the regulation of uptake were already detectable on the day of birth (N0) in AMV resuspended in NaCl, with GTPgammaS inducing both stimulatory and inhibitory responses. These data indicate that the processes by which 22Na+ uptake into AMV is regulated by G-proteins undergoes a change at birth and by 4 days of age, G-protein regulation of uptake occurs predominantly via modulation of co-localised Na+ channels. Intravesicular incorporation of GDPbetaS or pre-treatment with PTX did not significantly alter conductive 22Na+ uptake in the presence of NaCl or NaIse suggesting that constitutively active G-proteins are not involved in this process. Pre-treatment of AMV with PTX prevented the inhibition of conductive 22Na+ uptake by GTPgammaS (105+/-16% n=7) indicating that a PTX-sensitive G-protein mediates the inhibition of channels in neonatal AMV. Western blotting demonstrated enrichment of Gialpha1, Gialpha2, Gialpha3 and Goalpha in the apical membrane preparations. We also show that there is a significant rise in the levels of Gialpha3 during the early neonatal period providing a potential candidate for the G-protein mediated changes in regulation of conductive 22Na+ uptake in neonatal AMV.  相似文献   

5.
Z Li  V N Murthy 《Neuron》2001,31(4):593-605
We have investigated mechanisms in postendocytic processing of synaptic vesicles at hippocampal synapses, using synaptobrevin/vesicle-associated membrane protein (VAMP) tagged with variants of the green fluorescent protein. Following exocytosis, VAMP is retrieved at synaptic and adjoining axonal regions. Retrieved VAMP-containing vesicles return to synaptic vesicle clusters at a rate slower than endocytosis. Vesicles containing a different protein, synaptophysin, recluster at a similar rate, suggesting common vesicular intermediates for the two proteins. Activity prolongs the time taken by endocytosed vesicles to return to synapses. Exogenous calcium buffers slow endocytosis but have no additional effect on the time course of reclustering. In contrast, the protein kinase inhibitor staurosporine does not affect endocytosis but slows reclustering. Finally, since VAMP can move freely on surface membranes, sustained synaptic activity leads to mixing of this vesicular component between adjacent synapses.  相似文献   

6.
In the present study, we examined the possible interaction between Rab4 and syntaxin 4, both having been implicated in insulin-induced GLUT4 translocation. Rab4 and syntaxin 4 were coimmunoprecipitated from the lysates of electrically permeabilized rat adipocytes. The interaction between the two proteins was reduced by insulin treatment and increased by the addition of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). An in vitro binding assay revealed that the bacterially expressed Rab4 was bound to a glutathione S-transferase fusion protein containing the cytoplasmic domain of syntaxin 4 (GST-syntaxin 4-(1-273)) but not to syntaxin 1A or vesicle-associated membrane protein-2. The interaction between Rab4 and syntaxin 4 seemed to be regulated by the guanine nucleotide status of Rab4, because 1) GTPgammaS treatment of the cells significantly increased, but guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) treatment decreased the amount of Rab4 pulled down with GST-syntaxin 4-(1-273) from the cell lysates; 2) GTPgammaS loading on Rab4 caused a marked increase in the affinity of Rab4 to syntaxin 4 whereas GDPbetaS loading had little effect; and 3) a GTPase-deficient mutant of Rab4 (Rab4(Q67L)), but not a GTP-binding-defective mutant (Rab4(S22N)), was bound to GST-syntaxin 4-(1-273). Although insulin stimulated [gamma-(32)P]GTP binding to Rab4 in a time-dependent fashion, its effect on the Rab4 interaction with syntaxin 4 was apparently biphasic; an initial increase in Rab4 associated with syntaxin 4 was followed by a gradual dissociation of the GTPase from syntaxin 4. Finally, the binding of Rab4(Q67L) to GST-syntaxin 4-(1-273) was inhibited by munc-18c in a dose-dependent manner, indicating that GTP-loaded Rab4 binds to syntaxin 4 in the open conformation. These results suggest that 1) Rab4 interacts with syntaxin 4 in a direct and specific manner, and 2) the interaction is regulated by the guanine nucleotide status of Rab4 as well as by the conformational status of syntaxin 4.  相似文献   

7.
The synaptic vesicle cycle sustains neurotransmission and keeps pace between exo- and endocytosis in synapses. GTP-binding proteins function as key regulators of this cycle. The large GTPase dynamin is implicated in fission of clathrin-coated vesicles from the presynaptic membrane during endocytosis. The present study addresses the effect of the non-hydrolysable GTP analog, GTPgammaS, on the assembly of the dynamin fission complex in situ. Intraaxonal microinjections of GTPgammaS induced distinct ultrastructural changes in synapses: the number of synaptic vesicles at active zones was reduces, and the number of docked vesicles was increased; at the same time the number of clathrin-coated intermediates at the synaptic endocytic zone was increased, indicating that synaptic vesicle recycling was inhibited. Clathrin-coated intermediates with unusual shape were found. At low concentrations of GTPgammaS they were represented by long tubules decorated by spirals containing dynamin and clathrin-coated vesicles on the top. At high concentrations of GTPgammaS the tubulular structures were shorted and branched. The pitch of the spiral and tubule's diameter were significantly reduced (23.1 +/- 0.4 and 19.0 +/- 0.5 nm, respectively, as compared to those at low concentration of GTPgammaS, 26.6 +/- 0.4 and 23.3 +/- 0.4 nm; P < 0.001). We suggest that these structural changes correspond to distinct steps in the fission reaction. A model is proposed. It implies that the fast GTP hydrolysis leads to an increase in length of the spiral due to the straightening of the dynamin dimmers, composing the spiral. This leads to a fast increase both in the pitch and the diameter of the helix. The shift in diameter breaks the local hydrophobic interactions between the inner and the outer leaflets of the lipid membrane at the sites of dynamin binding. Stretching of the spiral leads to an expansion of the neck in the longitudinal direction and promotes severing of the membrane that subsequently results in the release of the clathrin-coated vesicle.  相似文献   

8.
The glycosyl-phosphatidylinositol anchored protein, membrane dipeptidase (EC 3.4.13.19) is released from the surface of 3T3-L1 adipocytes in response to insulin treatment through the action of a phospholipase C. The present study investigates the role of guanine-nucleotide binding proteins (G-proteins) in this process. Treatment of permeabilized 3T3-L1 adipocytes with GTPgammaS did not cause release of membrane dipeptidase into the medium, while GDPbetaS did not inhibit the insulin-stimulated release of membrane dipeptidase. Other activators of G-proteins, including the tetradecapeptide mastoparan, pertussis toxin and AlF3, also caused no significant release of membrane dipeptidase from the surface of the 3T3-L1 adipocytes. From these observations it is concluded that G-proteins are not involved in the insulin-stimulated release of membrane dipeptidase. Although X-Pro aminopeptidase (EC 3.4.11.9) is GPI-anchored in 3T3-L1 adipocytes as shown by digestion with bacterial phosphatidylinositol-specific phospholipase C, it was not released upon insulin treatment of the cells, indicating that only a subset of the GPI-anchored proteins are susceptible to insulin-stimulated release.  相似文献   

9.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

10.
Rapid Endocytosis and Vesicle Recycling in Neuroendocrine Cells   总被引:1,自引:0,他引:1  
Endocytosis is a crucial process for neuroendocrine cells that ensures membrane homeostasis, vesicle recycling, and hormone release reliability. Different endocytic mechanisms have been described in chromaffin cells, such as clathrin-dependent slow endocytosis and clathrin-independent rapid endocytosis. Rapid endocytosis, classically measured in terms of a fast decrease in membrane capacitance, exhibits two different forms, “rapid compensatory endocytosis” and “excess retrieval.” While excess retrieval seems to be associated with formation of long-lasting endosomes, rapid compensatory endocytosis is well correlated with exocytotic activity, and it is regarded as a mechanism associated to rapid vesicle recycling during normal secretory activity. It has been suggested that rapid compensatory endocytosis may be related to the prevalence of a transient fusion mode of exo-endocytosis. In the latter mode, the fusion pore, a nanometric-sized channel formed at the onset of exocytosis, remains open for a few hundred milliseconds and later abruptly closes, releasing a small amount of transmitters. By this mechanism, endocrine cell selectively releases low molecular weight transmitters, and rapidly recycles the secretory vesicles. In this article, we discuss the cellular and molecular mechanisms that define the different forms of exocytosis and endocytosis and their impact on vesicle recycling pathways.  相似文献   

11.
Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.  相似文献   

12.
Ritchie S  Gilroy S 《Plant physiology》2000,124(2):693-702
We have previously determined that phospholipase D (PLD) is activated by abscisic acid (ABA), and this activation is required for the ABA response of the cereal aleurone cell. In this study, ABA-stimulated PLD activity was reconstituted in vitro in microsomal membranes prepared from aleurone protoplasts. The transient nature (20 min) and degree (1.5- to 2-fold) of activation in vitro were similar to that measured in vivo. Stimulation by ABA was only apparent in the membrane fraction and was associated with a fraction enriched in plasma membrane. These results suggest that an ABA receptor system and elements linking it to PLD activation are associated with the aleurone plasma membrane. The activation of PLD in vitro by ABA was dependent on the presence of GTP. Addition of GTPgammaS transiently stimulated PLD in an ABA-independent manner, whereas treatment with GDPbetaS or pertussis toxin blocked the PLD activation by ABA. Application of pertussis toxin to intact aleurone protoplasts inhibited the ability of ABA to activate PLD as well as antagonizing the ability of ABA to down-regulate gibberellic acid-stimulated alpha-amylase production. All of these data support the hypothesis that ABA stimulation of PLD activity occurs at the plasma membrane and is mediated by G-protein activity.  相似文献   

13.
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.  相似文献   

14.
Constitutive exo- and endocytic events are expected to increase and diminish the cell surface area in small spontaneous steps. Indeed, cell-attached patch-clamp measurements in resting chromaffin cells revealed spontaneous upward and downward steps in the electrical capacitance of the plasma membrane. The most frequent step size indicated cell surface changes of <0.04 microm(2), corresponding to vesicles of <110 nm diameter. Often downward steps followed upward steps within seconds, and vice versa, as if vesicles transiently opened and closed their lumen to the external space. Transient openings and closings sometimes alternated rhythmically for tens of seconds. The kinase inhibitor staurosporine dramatically increased the occurrence of such rhythmic episodes by making vesicle closure incomplete and by inhibiting fission. Staurosporine also promoted transient closures of large endocytic vesicles possibly representing remnants of secretory granules. We suggest that staurosporine blocks a late step in the endocytosis of both small and large vesicles, and that endocytosis involves a reaction cascade that can act as a chemical oscillator.  相似文献   

15.
Extracellular ATP activates large increases in cell surface area and membrane turnover in rat brown adipocytes (Pappone, P. A., and Lee, S. C. 1996. J. Gen. Physiol. 108:393-404). We used whole-cell patch clamp membrane capacitance measurements of membrane surface area concurrently with fura-2 ratio imaging of intracellular calcium to test whether these purinergic membrane responses are triggered by cytosolic calcium increases or G protein activation. Increasing cytosolic calcium with adrenergic stimulation, calcium ionophore, or calcium-containing pipette solutions did not cause exocytosis. Extracellular ATP increased membrane capacitance in the absence of extracellular calcium with internal calcium strongly buffered to near resting levels. Purinergic stimulation still activated exocytosis and endocytosis in the complete absence of intracellular and extracellular free calcium, but endocytosis predominated. Modulators of G protein function neither triggered nor inhibited the initial ATP-elicited capacitance changes, but GTPgammaS or cytosolic nucleotide depletion did reduce the cells' capacity to mount multiple purinergic responses. These results suggest that calcium modulates purinergically-stimulated membrane trafficking in brown adipocytes, but that ATP responses are initiated by some other signal that remains to be identified.  相似文献   

16.
We have shown that endocytosis at the apical plasma membrane ofpancreatic acinar cells is regulated by the pH of the acinar lumen andis associated with cleavage of GP2, a glycosylphosphatidylinositol-anchored protein. The aim of this study was todetermine the transduction pathway by which endocytosis is activated.Apical endocytosis was studied in rat pancreatic acini byprestimulation with cholecystokinin followed by measurement ofhorseradish peroxidase (HRP) uptake. Lanthanum, staurosporine, andforskolin had no effect on HRP uptake. Cytochalasin D significantlyinhibited endocytosis, indicating a dependence on actin filamentintegrity. Genistein and the specific tyrphostin inhibitor B42 alsoinhibited HRP uptake, implicating tyrosine kinases in the regulation ofHRP uptake. With the use of an Src kinase-specific substrate, Srckinase activity was temporally related to activation of endocytosis.The tyrosine-dependent phosphorylation of an 85-kDa substrate in bothrat and mouse pancreatic acini correlated with Src kinase activationand pH-dependent regulation of HRP uptake. These results indicate thatapical endocytosis in acinar cells is associated with tyrosine kinaseactivation and is dependent on the actin cytoskeleton.  相似文献   

17.
We used the patch-clamp technique to study the effects of extracellular ATP on the activity of ion channels recorded in rat pancreatic beta-cells. In cell-attached membrane patches, action currents induced by 8.3 mM glucose were inhibited by 0.1 mM ATP, 0.1 mM ADP or 15 microM ADPbetaS but not by 0.1 mM AMP or 0.1 mM adenosine. In perforated membrane patches, action potentials were measured in current clamp, induced by 8.3 mM glucose, and were also inhibited by 0.1 mM ATP with a modest hyperpolarization to -43 mV. In whole-cell clamp experiments, ATP dose-dependently decreased the amplitudes of L-type Ca2+ channel currents (ICa) to 56.7+/-4.0% (p<0.001) of the control, but did not influence ATP-sensitive K+ channel currents observed in the presence of 0.1 mM ATP and 0.1 mM ADP in the pipette. Agonists of P2Y purinoceptors, 2-methylthio ATP (0.1 mM) or ADPbetaS (15 microM) mimicked the inhibitory effect of ATP on ICa, but PPADS (0.1 mM) and suramin (0.2 mM), antagonists of P2 purinoceptors, counteracted this effect. When we used 0.1 mM GTPgammaS in the pipette solution, ATP irreversibly reduced ICa to 58.4+/-6.6% of the control (p<0.001). In contrast, no inhibitory effect of ATP was observed when 0.2 mM GDPbetaS was used in the pipette solution. The use of either 20 mM BAPTA instead of 10 mM EGTA, or 0.1 mM compound 48/80, a blocker of phospholipase C (PLC), in the pipette solution abolished the inhibitory effect of ATP on ICa, but 1 microM staurosporine, a blocker of protein kinase C (PKC), did not. When the beta-cells were pretreated with 0.4 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump, ATP lost the inhibitory effect on ICa. These results suggest that extracellular ATP inhibits action potentials by Ca2+-induced ICa inhibition in which an increase in cytosolic Ca2+ released from thapsigargin-sensitive store sites was brought about by a P2Y purinoceptor-coupled G-protein, PI-PLC and IP3 pathway.  相似文献   

18.
The GLUT4 glucose transporter is predominantly retained inside basal fat and muscle cells, and it is rapidly recruited to the plasma membrane with insulin stimulation. There is controversy regarding the mechanism of basal GLUT4 retention. One model is that GLUT4 retention is dynamic, based on slow exocytosis and rapid internalization of the entire pool of GLUT4 (Karylowski, O., Zeigerer, A., Cohen, A., and McGraw, T. E. (2004) Mol. Biol. Cell 15, 870-882). In this model, insulin increases GLUT4 in the plasma membrane by modulating GLUT4 exocytosis and endocytosis. The second model is that GLUT4 retention is static, with approximately 90% of GLUT4 stored in compartments that are not in equilibrium with the cell surface in basal conditions (Govers, R., Coster, A. C., and James, D. E. (2004) Mol. Cell Biol. 24, 6456-6466). In this model, insulin increases GLUT4 in the plasma membrane by releasing it from the static storage compartment. Here we show that under all experimental conditions examined, basal GLUT4 retention is by a bipartite dynamic mechanism involving slow efflux and rapid internalization. To establish that the dynamic model developed in studies of the extreme conditions of >100 nm insulin and no insulin also describes GLUT4 behavior at more physiological insulin concentrations, we characterized GLUT4 trafficking in 0.5 nm insulin. This submaximal insulin concentration promotes an intermediate effect on both GLUT4 exocytosis and endocytosis, resulting in an intermediate degree of redistribution to the plasma membrane. These data establish that changes in the steady-state surface/total distributions of GLUT4 are the result of gradated, insulin-induced changes in GLUT4 exocytosis and endocytosis rates.  相似文献   

19.
Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.  相似文献   

20.
The mechanism by which Chlamydia trachomatis is endocytosed by host cells is unclear. Studies of the kinetics of chlamydial attachment and uptake in the susceptible HeLa 229 cell line showed that chlamydial endocytosis was rapid and saturable but limited by the slow rate of chlamydial attachment. To overcome this limitation and to investigate the mechanism of endocytosis, chlamydiae were centrifuged onto the host cell surface in the cold to promote attachment. Endocytosis of the adherent chlamydiae was initiated synchronously by rapid warming to 36 degrees C. Electron micrographs of chlamydial uptake 5 min after onset showed that chlamydial ingestion involves movement of the host cell membrane, leading to interiorization in tight, endocytic vacuoles which were not clathrin coated. Chlamydial ingestion was not inhibited by monodansylcadaverine or amantadine, inhibitors of receptor-mediated endocytosis and chlamydiae failed to displace [3H]sucrose from micropinocytic vesicles. Chlamydial endocytosis was markedly inhibited by cytochalasin D, an inhibitor of host cell microfilament function, and by vincristine or vinblastine, inhibitors of host cell microtubules. Hyperimmune rabbit antibody prevented the ingestion of adherent chlamydiae, suggesting that endocytosis requires the circumferential binding of chlamydial and host cell surface ligands. These findings were incompatible with the suggestion that chlamydiae enter cells by taking advantage of the classic mechanism of receptor-mediated endocytosis into clathrin-coated vesicles, used by the host cell for the internalization of beta-lipoprotein and other macromolecules, but were consistent with the hypothesis that chlamydiae enter cells by a microfilament-dependent zipper mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号