首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated with poly(I:C) or alpha interferon, suggesting a direct effect of virus infection. To determine the mechanism(s) involved in the induction of chemokine production by DEN2V, individual dengue virus genes were cloned into plasmids and expressed in HEK293 cells. Transfection of a plasmid expressing NS5 or a dengue virus replicon induced IL-8 gene expression and secretion. RANTES expression was not induced under these conditions, however. Reporter assays showed that IL-8 induction by NS5 was principally through CAAT/enhancer binding protein, whereas DEN2V infection also induced NF-kappaB. These results indicate a role for the dengue virus NS5 protein in the induction of IL-8 by DEN2V infection. Recruitment and activation of potential target cells to sites of DEN2V replication by virus-induced chemokine production may contribute to viral replication as well as to the inflammatory components of dengue virus disease.  相似文献   

2.
BACKGROUND: The need for safe and effective treatment of dengue virus (DEN), a class A agent that causes dengue hemorrhagic fever/dengue shock syndrome, has been a critical global priority. An effective vaccine for DEN is not yet available. In this study the possibility of attenuating DEN infection using adeno-associated virus (AAV)-encoded short interfering RNAs (siRNA) was examined in Vero cells and human dendritic cells (DCs). METHODS: A cassette encoding siRNA targeted to a 3' untranslated sequence common to all DEN serotypes was designed and tested for its ability to attenuate DEN infection by use of AAV delivery. RESULTS: Vero cells or DCs infected with AAV-siRNA showed a significant, dose-dependent reduction in DEN infection. Treatment of DCs with AAV-siRNA also decreased the DEN-induced apoptosis of DCs and did not induce significant inflammation. CONCLUSION: These results demonstrate that AAV-mediated siRNA delivery is capable of reducing DEN infection in cells and may be useful in decreasing DEN replication in humans.  相似文献   

3.
Dengue (DEN) viruses consisting of four distinct serotypes cause diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome in humans. Most of the dengue viruses can be effectively propagated in some mosquito and mammalian cell lines. In this study, we applied microcarrier cell culture technology to study two relevant aspects involving dengue virus, one on biotechnology of cell growth and virus production, and the other on virus biology concerning genetic variation of a virus population. We investigated the growth of C6/36 mosquito cells and Vero cells grown on Cytodex 1 microcarriers. High-titer DEN virus production can be achieved in C6/36 and Vero cells infected at low cell inoculation density, in the lag-phase cell stage, and at low multiplicity of infection (MOI). The maximum titers produced for DEN-1, DEN-3, and DEN-4 viruses were approximately 10- to 10,000-fold lower than for DEN-2 virus produced in C6/36 and Vero cells grown on microcarriers. The DEN-2 virus produced in C6/36 cells displayed far more extensive plaque heterogeneity than in Vero cells. Microcarrier C6/36 mosquito cell culture appeared to be the most effective system for four-serotype DEN virus production. Interestingly, some selected variants of DEN virus may outgrow in Vero cells when using a T-flask culture. These results may provide useful information for DEN vaccine development.  相似文献   

4.
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.  相似文献   

5.
Monitoring antigen-specific memory B cells and the antibodies they encode is important for understanding the specificity, breadth and duration of immune response to an infection or vaccination. The antibodies isolated could further help design vaccine antigens for raising relevant protective immune responses. However, developing assays to measure and isolate antigen-specific memory B cells is technically challenging due to the low frequencies of these cells that exist in the circulating blood. Here, we describe a flow cytometry method to identify and isolate dengue envelope-specific memory B cells using a labeled dengue envelope protein. We enumerated dengue-envelope specific memory B cells from a cohort of dengue seropositive donors using this direct flow cytometry assay. A more established and conventional assay, the cultured B ELISPOT, was used as a benchmark comparator. Furthermore, we were able to confirm the single-sorted memory B-cell specificity by culturing B cells and differentiating them into plasma cells using cell lines expressing CD40L. The culture supernatants were assayed for antigen binding and the ability of the antibodies to neutralize the cognate dengue virus. Moreover, we successfully isolated the heavy and light Ig sequences and expressed them as full-length recombinant antibodies to reproduce the activity seen in culture supernatants. Mapping of these antibodies revealed a novel epitope for dengue 2 virus serotype. In conclusion, we established a reproducible methodology to enumerate antigen-specific memory B cells and assay their encoded antibodies for functional characterization.  相似文献   

6.

Background

Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection.

Methods

Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured.

Results

iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated.

Conclusion

iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.  相似文献   

7.
Cytolytic T-cell responses from 63 normal blood donors were monitored in a Mycobacterium bovis BCG infection system in vitro. We wanted to know whether cultured dendritic cells were capable of potentiating the cytolytic T-cell responses to M. bovis BCG. Infected cultured dendritic cells were up to ten times more effective antigen-presenting cells than macrophages in proliferative assays, while cytolytic T-cell induction did not differ significantly between dendritic cells and macrophages. Separated CD4+ and CD8+ T-cell subsets contributed equally to lysis of infected targets. Experiments comparing wild-type M. bovis BCG strain with two new recombinant M. bovis BCG strains secreting listeriolysin revealed statistically significant higher maximal lysis values for recombinant M. bovis BCG. We conclude from our in vitro infection system with mycobacteria that dendritic cells are superior to macrophages in proliferative assays but equal to macrophages in their ability to induce cytolytic T-cell responses. Moreover, our data suggest that recombinant M. bovis BCG vaccine strains secreting listeriolysin improve cytolytic T-cell responses.  相似文献   

8.
The ability of mycobacteria to disseminate from the initial site of infection has an important role in immune priming and in the seeding of disease in multiple organs. To study this phenomenon, we used flow cytometry to analyse the distribution of green fluorescent protein-labelled BCG amongst different populations of antigen-presenting cells in the lungs of mice following intranasal infection, and monitored appearance of live bacteria in the draining mediastinal lymph nodes. BCG predominantly infected alveolar macrophages (CD11c(+)/CD11b(-)) and dendritic cells (CD11c(+)/CD11b(+)) in the lungs. The bacteria that disseminated to the lymph node were found in dendritic cells. The results are consistent with a model in which mycobacterial dissemination from the lung is initiated by the migration of infected dendritic cells to the draining lymph nodes.  相似文献   

9.
Dengue virus (DEN), a flavivirus, causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, the most common mosquito-borne viral illnesses in humans worldwide. In this study, using STAT1(-/-) mice bearing two different mutant stat1 alleles in the 129/Sv/Ev background, we demonstrate that IFNR-dependent control of primary DEN infection involves both STAT1-dependent and STAT1-independent mechanisms. The STAT1 pathway is necessary for clearing the initial viral load, whereas the STAT1-independent pathway controls later viral burden and prevents DEN disease in mice. The STAT1-independent responses in mice with primary DEN infection included the early activation of B and NK cells as well as the up-regulation of MHC class I molecules on macrophages and dendritic cells. Infection of bone marrow-derived dendritic cell cultures with either DEN or Sindbis virus, another positive-strand RNA virus, confirmed the early vs late natures of the STAT1-dependent and STAT1-independent pathways. Collectively, these data begin to define the nature of the STAT1-dependent vs the STAT1-independent pathway in vivo.  相似文献   

10.
Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.  相似文献   

11.
There is strong epidemiological evidence that Chlamydia infection can lead to exacerbation of asthma. However, the mechanism(s) whereby chlamydial infection, which normally elicits a strong Th type 1 (Th1) immune response, can exacerbate asthma, a disease characterized by dominant Th type 2 (Th2) immune responses, remains unclear. In the present study, we show that Chlamydia muridarum infection of murine bone marrow-derived dendritic cells (BMDC) modulates the phenotype, cytokine secretion profile, and Ag-presenting capability of these BMDC. Chlamydia-infected BMDC express lower levels of CD80 and increased CD86 compared with noninfected BMDC. When infected with Chlamydia, BMDC secrete increased TNF-alpha, IL-6, IL-10, IL-12, and IL-13. OVA peptide-pulsed infected BMDC induced significant proliferation of transgenic CD4(+) DO11.10 (D10) T cells, strongly inhibited IFN-gamma secretion by D10 cells, and promoted a Th2 phenotype. Intratracheal transfer of infected, but not control noninfected, OVA peptide-pulsed BMDC to naive BALB/c mice, which had been i.v. infused with naive D10 T cells, resulted in increased levels of IL-10 and IL-13 in bronchoalveolar lavage fluid. Recipients of these infected BMDC showed significant increases in airways resistance and decreased airways compliance compared with mice that had received noninfected BMDC, indicative of the development of airways hyperreactivity. Collectively, these data suggest that Chlamydia infection of DCs allows the pathogen to deviate the induced immune response from a protective Th1 to a nonprotective Th2 response that could permit ongoing chronic infection. In the setting of allergic airways inflammation, this infection may then contribute to exacerbation of the asthmatic phenotype.  相似文献   

12.
Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4(+) T cells responding to HCV core in patients with chronic HCV infection. However, CD4(+) response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4(+) response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.  相似文献   

13.
An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune etiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applied for dengue fever.  相似文献   

14.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.  相似文献   

15.
The interplay of different inflammatory cytokines induced during a dengue (DEN) virus infection plays a role in either protection or increased disease severity. We measured the frequencies and characterized the cytokine responses of DEN virus-specific memory CD4+ T cells in PBMC of six volunteers who received experimental live attenuated monovalent DEN vaccines. IFN-gamma and TNF-alpha responses to inactivated DEN Ags were detected in up to 0.54 and 1.17% of total circulating CD4+ T cells, respectively. Ags from the homologous serotype elicited the highest IFN-gamma response. The ratio of TNF-alpha- to IFN-gamma-producing CD4+ T cells was higher after stimulation with Ags from heterologous DEN serotypes. Peptide-specific CD4+ T cell frequencies of up to 0.089% were detected by direct staining using HLA class II tetramers. IFN-gamma and TNF-alpha responses to individual HLA class II-restricted peptide epitopes were detected in up to 0.05 and 0.27% of CD4+ T cells, respectively. Peptide sequences from the homologous serotype elicited a variety of cytokine response patterns. TNF-alpha- to IFN-gamma-positive CD4+ T cell ratios varied between peptides, but the ratio of the sum of responses was highest against heterologous serotypes. These results demonstrate epitope sequence-specific differences in T cell effector function. These patterns of effector responses may play a role in the immunopathogenesis of DEN hemorrhagic fever.  相似文献   

16.
Reactivation of serotype cross-reactive CD8+ memory T lymphocytes is thought to contribute to the immunopathogenesis of dengue disease during secondary infection by a heterologous serotype. Using cytokine flow cytometry, we have defined four novel HLA-A*02-restricted dengue viral epitopes recognized by up to 1.5% of circulating CD8+ T cells in four donors after primary vaccination. All four donors had the highest cytokine response to the epitope NS4b 2353. We also studied the effect of sequence differences in heterologous dengue serotypes on dengue-reactive CD8+ memory T cell cytokine and proliferative responses. The D3 variant of a different NS4b epitope 2423 and the D2 variant of the NS4a epitope 2148 induced the largest cytokine response, compared with their respective heterologous sequences in all donors regardless of the primary vaccination serotype. Stimulation with variant peptides also altered the relative frequencies of the various subsets of cells that expressed IFN-gamma, TNF-alpha, MIP-1beta, and combinations of these cytokines. These results indicate that the prior infection history of the individual as well as the serotypes of the primary and heterologous secondary viruses influence the nature of the secondary response. These differences in the effector functions of serotype cross-reactive memory T cells induced by heterologous variant epitopes, which are both quantitative and qualitative, may contribute to the clinical outcome of secondary dengue infection.  相似文献   

17.
Hydroxy and carboxylic acids in the supernatant fluids of mosquito cell cultures infected with four serotypes of dengue viruses (DEN) were analyzed by frequency-pulsed electron capture gasliquid chromatography. The hydroxy acid profiles of all virus-infected cell cultures differed qualitatively and quantitatively from the profile of normal cell culture. Furthermore, the profiles of hydroxy acids in the DEN 1- and DEN 4-infected cultures were type specific. Although quantitative differences of a few peaks could be found between the hydroxy acid profiles of DEN 2- and DEN 3-infected cultures, in the absence of clear qualitative differences the two profiles were considered to be essentially indistinguishable. The carboxylic acid profiles of virus-infected cultures differed from the profile of a normal cell culture, but none of the four serotypes of DEN viruses induced type-specific profiles. Thus, these findings contrasted to previous results with rhesus monkey kidney cell cultures (LLC-MK2), in which serotype-specific sets of hydroxy acids and a DEN 1-specific set of carboxylic acids were released in the supernatant fluids by the infection with dengue viruses.  相似文献   

18.
Here we report that severe combined immunodeficient (SCID) mice engrafted with human K562 cells (K562-SCID mice) can be used as an animal model to study dengue virus (DEN) infection. After intratumor injection into K562 cell masses of PL046, a Taiwanese DEN-2 human isolate, the K562-SCID mice showed neurological signs of paralysis and died at approximately 2 weeks postinfection. In addition to being detected in the tumor masses, high virus titers were detected in the peripheral blood and the brain tissues, indicating that DEN had replicated in the infected K562-SCID mice. In contrast, the SCID mice were resistant to DEN infection and the mock-infected K562-SCID mice survived for over 3 months. These data illustrate that DEN infection contributed directly to the deaths of the infected K562-SCID mice. Other serotypes of DEN were also used to infect the K562-SCID mice, and the mortality rates of the infected mice varied with different challenge strains, suggesting the existence of diverse degrees of virulence among DENs. To determine whether a neutralizing antibody against DEN in vitro was also protective in vivo, the K562-SCID mice were challenged with DEN-2 and received antibody administration at the same time or 1 day earlier. Our results revealed that the antibody-treated mice exhibited a reduction in mortality and a delay of paralysis onset after DEN infection. In contrast to K562-SCID, the persistently DEN-infected K562 cells generated in vitro invariably failed to be implanted in the mice. It seems that in the early stage of implantation, a gamma interferon activated, nitric oxide-mediated anti-DEN effect might play a role in the innate immunity against DEN-infected cells. The system described herein offers an opportunity to explore DEN replication in vivo and to test various antiviral protocols in infected hosts.  相似文献   

19.
20.
The influx of macrophages into the lungs is the major component of the granulomatous response to infection with Mycobacterium tuberculosis. In this investigation we used flow cytometric analysis to define macrophage populations entering the airways and lung tissues of infected mice. We demonstrate that by the judicious use of cell surface markers, especially CD11b and CD11c, several cell populations can be distinguished, allowing cell sorting and morphological definition. Primary populations of CD11b(-)/CD11c(+/high) were defined as alveolar macrophages, CD11b(high)/CD11c(+/high) as dendritic cells, and CD11b(+/mid)/CD11c(+/mid) as small macrophages or monocytes, and changes in the activation phenotype of these populations were followed over the early course of the infection. In further studies, these cell populations were compared with cells harvested during the chronic stage of the disease. During the chronic stage of infection, Ag-presenting class II molecules and activation markers were poorly expressed on dendritic, small macrophage, and monocyte cell populations, which may have important implications for the breakdown of the lesions during reactivation disease. This analytical approach may facilitate the further characterization of macrophage populations entering into the lung tissues and their relative contributions to host resistance to tuberculosis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号