首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Phosphorylation of CREB (cyclic AMP [cAMP]- response element [CRE]-binding protein) by cAMP-dependent protein kinase (PKA) leads to the activation of many promoters containing CREs. In neurons and other cell types, CREB phosphorylation and activation of CRE-containing promoters can occur in response to elevated intracellular Ca2+. In cultured cells that normally lack this Ca2+ responsiveness, we confer Ca(2+)-mediated activation of a CRE-containing promoter by introducing an expression vector for Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV). Activation could also be mediated directly by a constitutively active form of CaMKIV which is Ca2+ independent. The CaMKIV-mediated gene induction requires the activity of CREB/ATF family members but is independent of PKA activity. In contrast, transient expression of either a constitutively active or wild-type Ca2+/calmodulin-dependent protein kinase type II (CaMKII) fails to mediate the transactivation of the same CRE-containing reporter gene. Examination of the subcellular distribution of transiently expressed CaMKIV and CaMKII reveals that only CaMKIV enters the nucleus. Our results demonstrate that CaMKIV, which is expressed in neuronal, reproductive, and lymphoid tissues, may act as a mediator of Ca(2+)-dependent gene induction.  相似文献   

6.
The regulation of tissue turnover requires the coordinated activity of both local and systemic factors. Nucleotides exist transiently in the extracellular environment, where they serve as ligands to P2 receptors. Here we report that the localized release of these nucleotides can sensitize osteoblasts to the activity of systemic factors. We have investigated the ability of parathyroid hormone (PTH), a principal regulator of bone resorption and formation, to potentiate signals arising from nucleotide stimulation of UMR-106 clonal rat osteoblasts. PTH receptor activation alone did not lead to [Ca(2+)](i) elevation in these cells, indicating no G(q) coupling, however, activation of G(q)-coupled P2Y(1) receptors resulted in characteristic [Ca(2+)](i) release. PTH potentiated this nucleotide-induced Ca(2+) release, independently of Ca(2+) influx. PTH-(1-31), which activates only G(s), mimicked the actions of PTH-(1-34), whereas PTH-(3-34), which only activates G(q), was unable to potentiate nucleotide-induced [Ca(2+)](i) release. Despite this coupling of the PTHR to G(s), cAMP accumulation or protein kinase A activation did not contribute to the potentiation. 3-Isobutyl-1-methylxanthine, but not forskolin effectively potentiated nucleotide-induced [Ca(2+)](i) release, however, further experiments proved that cyclic monophosphates were not involved in the potentiation mechanism. Costimulation of UMR-106 cells with P2Y(1) agonists and PTH led to increased levels of cAMP response element-binding protein phosphorylation and a synergistic effect was observed on endogenous c-fos gene expression following costimulation. In fact the calcium responsive Ca/cAMP response element of the c-fos promoter alone was effective at driving this synergistic gene expression. These findings demonstrate that nucleotides can provide a targeted response to systemic factors, such as PTH, and have important implications for PTH-induced signaling in bone.  相似文献   

7.
Steroid hormones exert genotropic actions through members of the nuclear receptor family. Here, we have demonstrated genotropic actions of testosterone that are independent of intracellular androgen receptors (iAR). Through plasma membrane androgen receptors (mAR), testosterone induces a rapid rise in the intracellular free Ca(2+) concentration of iAR-free murine RAW 264.7 macrophages. This nongenomic testosterone signaling, which is independent of both iAR and estrogen receptors, does not in itself activate either the mitogen-activated protein kinase (MAPK) families ERK1/2, p38, and JNK/SAPK, the stably and transiently transfected c-fos promoter, or NO production. In the context of lipopolysaccharide (LPS) signaling, however, testosterone attenuates LPS activation of the c-fos promoter and NO production, which is abolished by the intracellular Ca(2+) chelator BAPTA. Testosterone also attenuates the LPS activation of p38 but not that of ERK1/2 and JNK/SAPK, and this attenuation is abrogated by BAPTA. Moreover, the p38 inhibitor, SB 203580, largely reduces LPS activation of the c-fos promoter and NO production, and the remaining levels are no longer regulated by testosterone. This study is the first to provide information on genotropic actions of mAR-mediated nongenomic testosterone Ca(2+) signaling by cross-talk with the LPS signaling pathway through p38 MAPK with impact on cell function.  相似文献   

8.
Regulation of the mitogen-activated protein kinase (MAPK) family by gonadotropin-releasing hormone (GnRH) in the gonadotrope cell line LbetaT2 was investigated. Treatment with gonadotropin-releasing hormone agonist (GnRHa) activates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). Activation of ERK by GnRHa occurred within 5 min, and declined thereafter, whereas activation of JNK by GnRHa occurred with a different time frame, i.e. it was detectable at 5 min, reached a plateau at 30 min, and declined thereafter. GnRHa-induced ERK activation was dependent on protein kinase C or extracellular and intracellular Ca(2+), whereas GnRHa-induced JNK activation was not dependent on protein kinase C or on extracellular or intracellular Ca(2+). To determine whether a mitogen-activated protein kinase family cascade regulates rat luteinizing hormone beta (LHbeta) promoter activity, we transfected the rat LHbeta (-156 to +7)-luciferase construct into LbetaT2 cells. GnRH activated the rat LHbeta promoter activity in a time-dependent manner. Neither treatment with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD98059, nor cotransfection with a catalytically inactive form of a mitogen-activated protein kinase construct inhibited the induction of the rat LHbeta promoter by GnRH. Furthermore, cotransfection with a dominant negative Ets had no effect on the response of the rat LHbeta promoter to GnRH. On the other hand, cotransfection with either dominant negative JNK or dominant negative c-Jun significantly inhibited the induction of the rat LHbeta promoter by GnRH. In addition, GnRH did not induce either the rat LHbeta promoter activity in LbetaT2 cells transfected stably with dominant negative c-Jun. These results suggest that GnRHa differentially activates ERK and JNK, and a JNK cascade is necessary to elicit the rat LHbeta promoter activity in a c-Jun-dependent mechanism in LbetaT2 cells.  相似文献   

9.
10.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

11.
12.
Estradiol (E(2)) exerts not only genotropic but also nongenomic actions through nuclear estrogen receptors (ER). Here, we provide a novel paradigm for nongenomic E(2) signaling independent of nuclear ER. E(2) induces a rapid rise in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) through membrane estrogen receptors in murine RAW 264.7 macrophages. This E(2)-induced Ca(2+) signaling is not prevented by different ER blockers and cannot directly activate stably transfected c-fos promoter or the mitogen-activated protein kinases p38, ERK1/2, and SAPK/JNK, or NO production. However, the E(2)-induced rise in [Ca(2+)](i) specifically down-regulates the serum-stimulated activation of c-fos promoter and ERK1/2, and conversely, it specifically up-regulates lipopolysaccharide-stimulated activation of c-fos promoter, p38, and NO production. The E(2)-changed activation of c-fos promoter can be prevented by an intracellular Ca(2+) chelator. Our data indicate that E(2)-induced nongenomic Ca(2+) signaling through membrane ER is able to specifically modulate genotropic signaling pathways with impact on macrophage activation.  相似文献   

13.
Endothelin-1 (ET-1) triggers poorly understood nuclear signaling cascades that control gene expression, cell growth, and differentiation. To better understand how ET-1 regulates gene expression, we asked whether voltage-insensitive Ca2+ channels and Ca2+/calmodulin-dependent protein kinases (CaMKs) propagate signals from ET-1 receptors to the c-fos promoter in mesangial cells. Ca2+ influx through voltage-insensitive Ca2+ channels, one of the earliest postreceptor events in ET-1 signaling, mediated induction of c-fos mRNA and activation of the c-fos promoter by ET-1. A CaMK inhibitor (KN-93) blocked activation of the c-fos promoter by ET-1. Ectopic expression of CaMKII potentiated stimulation by ET-1, providing further evidence that CaMKs contribute to c-fos promoter activation by ET-1. The c-fos serum response element was necessary but not sufficient for CaMKII to activate the c-fos promoter. Activation of the c-fos promoter by ET-1 and CaMKII also required the FAP cis element, an AP-1-like sequence adjacent to the serum response element. Thus, voltage-insensitive Ca2+ channels and CaMKs apparently propagate ET-1 signals to the c-fos promoter that require multiple, interdependent cis elements. Moreover, these experiments suggest an important role for voltage-insensitive Ca2+ channels in nuclear signal transduction in nonexcitable cells.  相似文献   

14.
Agents that activate cAMP-dependent protein kinase (PKA) as well as agents that increase intracellular calcium induce the expression of certain immediate early genes (IEGs). Recently, it has been demonstrated that the same cis-acting element in the 5' region of the c-fos gene has the ability to mediate both cAMP- and calcium-induced c-fos expression in PC12 cells (Sheng, M., McFadden, G., and Greenberg, M. (1990) Neuron 4, 571-582). Here we demonstrate that both cAMP- and calcium-mediated induction of c-fos and egr1 are dependent on PKA activity. Addition of either depolarizing concentrations of KCl or the calcium ionophore, ionomycin, to PC12 cells increased the expression of both c-fos and egr1, but these inductions were dramatically reduced in three PKA-deficient cell lines, 123.7, AB.11, and A126-1B2. Furthermore, pretreatment of PC12 cells with 20 microM H89, a specific inhibitor of PKA, inhibited forskolin, dibutyryl cAMP, and KCl-induced c-fos and egr1 induction, while having no effect on NGF induction. Likewise, in the PKA-deficient cells, NGF or an activator of protein kinase C induced c-fos and egr1 normally. To determine if PKA deficiency modifies the ability of Ca2+ to activate calcium-dependent kinases, autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in response to Ca2+ influx was determined. In parental PC12 cells, PC12 cells pretreated with H89, and PKA-deficient cell lines, CaM kinase was activated equivalently in response to KCl depolarization. These results suggest that PKA is not required for Ca(2+)-induced increase in CaM kinase activity and that the induction of IEGs in response to Ca2+ influx is PKA-dependent. Thus, the requirement for PKA resides at a point distal to the activation of calmodulin-dependent processes.  相似文献   

15.
16.
17.
18.
Members of the newly identified receptor family for cytokines characteristically lack the intrinsic protein tyrosine kinase domain that is a hallmark of other growth factor receptors. Instead, accumulating evidence suggests that these receptors utilize nonreceptor-type protein tyrosine kinases for downstream signal transduction by cytokines. We have shown previously that the interleukin-2 receptor beta-chain interacts both physically and functionally with a Src family member, p56lck, and that p56lck activation leads to induction of the c-fos gene. However, the mechanism linking p56lck activation with c-fos induction remains unelucidated. In the present study, we systematically examined the extent of c-fos promoter activation by expression of a series of p56lck mutants, using a transient cotransfection assay. The results define a set of the essential amino acid residues that regulate p56lck induction of the c-fos promoter. We also provide evidence that the serum-responsive element and sis-inducible element are both targets through which p56lck controls c-fos gene activation.  相似文献   

19.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

20.
12-O-Tetradecanoylphorbol-13-acetate (TPA) activated the c-fos gene enhancer linked to the chloramphenicol acetyltransferase or luciferase reporter gene in the wild type PC-12 cells but not in the variant PC-12 cells that originated from the wild type cells. Transfection of the c-Ha-rasval12 complementary DNA (cDNA) or addition of dibutyryl cAMP to the wild type PC-12 cells as well as to the variant PC-12 cells activated the c-fos gene enhancer. Prolonged treatment of the wild type PC-12 cells with phorbol-12,13-dibutyrate caused down-regulation of protein kinase C. In these cells, TPA did not stimulate the c-fos gene enhancer any more, but transfection of the c-Ha-rasval12 cDNA still stimulated the c-fos gene enhancer to the same extent as induced in the control cells. Transfection of the c-Ha-rasval12 cDNA or addition of TPA to the wild type PC-12 cells stimulated the serum-response element but not the cAMP-response element. Dibutyryl cAMP stimulated both the serum-response element and the cAMP-response element in the wild type PC-12 cells. These results indicate that the c-Ha-rasval12 protein activates the serum-response element, but not the cAMP-response element in the c-fos gene enhancer, and that the signal pathway from the c-Ha-rasval12 protein to the c-fos serum-response element is independent of protein kinase C and cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号