首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low salt concentrations prevent reassociation of separated single strands of DNA, but not the renaturation of partially melted molecules. Rewinding, however, may be delayed (hysteresis) and/or incomplete (partial irreversibility). Long-range fluctuations in base compositioncould account for these observations: (a) the “zippering-up” of a denatured (G + C)-rich section may have to await that of one of its neighbouring (A + T)-rich sections, hence a temperature lag in rewinding; (b) the removal of intramolecular heterogeneities in base composition by fragmentation will give rise to a dispersal of strand-separation temperatures. Conversely, it is shown how a considerable amount of information about the topology of base distribution constraints could be derived from these phenomena.Some yeast ρ? (petite) mitochondrial DNAs, the melting of which is quasidiscontinuous, provide an excellent opportunity for testing the applicability of this new approach to denaturation mapping. Alternating partial denaturation and renaturation with a low rate of temperature change were followed by high-frequency recording of absorbance at 260 nm. A typical experiment (counterion concentration 0.015 m-Na+) carried out on a low-complexity (length of repetitive unit about 3000 base-pairs) ρ? DNA is reported in full detail. Analysis of the data disclosed the existence of two relatively (G + C)-rich clusters separated by long homogeneous stretches of high (A + T) content.The rewinding of ρ? DNAs is a discontinuous process. Both equilibrium and non-equilibrium melting processes were observed. Hysteresis in rewinding, which is restricted to the melting range, increases discontinuously with the extent of unwinding reached prior to cooling. Results are shown to be fully consistent with a model that presupposes that nucleation does not play any part in the renaturation process. They are briefly discussed further in the light of current concepts in the theory of helix-coil transitions of DNA.  相似文献   

2.
Abstract: A previous study of the metabolism of 6-[18F]-fluoro-l -3,4-dihydroxyphenylalanine (FDOPA) in rats pretreated with carbidopa contained information amenable to kinetic analysis. Using these data, tracer transfer coefficients and metabolic rate constants were estimated. After intravenous injection, FDOPA in circulation was O-methylated (kD0 = 0.055 min?1), and the metabolite (O-methyl-FDOPA) escaped from plasma with a rate constant (kM?1) of 0.01 min?1. The initial clearance of FDOPA to striatum (KD1) was 0.07 ml g?1 min?1, and the equilibrium distribution volume (VDe) was 0.67 ml g?1. The initial clearance of O-methyl-FDOPA to striatum (KM1) was 0.08 ml g?1 min?1, and the equilibrium distribution volume (VMe) was 0.75 ml g?1. The rate constant of FDOPA decarboxylation (kD3) was 0.17 min?1 in striatum. The elimination of 6-[18F]fluorodopamine (FDA) from striatum suggested an apparent rate constant for monoamine oxidase activity (k7) of 0.055 min?1. 6-[18F]Fluorohomovanillic acid (FHVA) was formed from 6-[18F]fluoro-l -3,4-dihydroxyphenylacetic acid with a rate constant (k11) of 0.083 min?1, and FHVA was eliminated from striatum (k9) with a rate constant of 0.12 min?1. The steady-state concentration ratios of FDA and its metabolites were shown to be functions of these rate constants.  相似文献   

3.
A model for the time dependence of DNA conformational state probabilities is formulated in the form of first-order differential equations. This model is applied to investigate the renaturation and denaturation rates for T2 and T7 DNA as reported in the series of experiments by Record and Zimm. Qualitative agreement is found in denaturation and for series of renaturation experiments with the same initial condition. However, partial agreement with series of renaturation experiments having the same final condition is obtained only by including an initial bimolecular step with properly matched pairs of strands. Comparison of all experiments with the calculated rates yields 5 × 104 min?1 as the step rate for melting a single base pair.  相似文献   

4.
The melting transition of DNA in alkaline CsCl can be followed in the analytical ultracentrifuge. Equilibrium partially denatured states can be observed. These partially denatured DNA bands have bandwidths of up to several times those of native DNA. Less stable molecules melt early and are found at heavier densities in the melting region. An idealized ultracentrifuge melting transition is described. The melting transition of singly nicked PM-2 DNA resembles the idealized curve. The DNA profile is a Gaussian band at all points in the melt. DNA's from mouse, D. Melanogaster, M. lysodeikticus, T4, and T7 also show equilibrium bands at partially denatured densities, some of which are highly asymmetric. Simple sequence satellite DNA shows an all-or-none transition with no equilibrium bands at partially denatured densities. The temperature at which a DNA denatures is an increasing function of the (G + C) content of the DNA. The Tm does not show a molecular-weight dependence in the range 1.2 × 106–1.5 × 107 daltons (single strand) for mouse, M. lysodeikticus, or T4 DNA. The mouse DNA partially denatured bands do not change shape as a function of molecular weight. The T4 DNA intermediate band develops a late-melting tail at low molecular weight. M. lysodeikticus DNA bands at partially denatured densities become broader as the molecular weight is decreased. Mouse DNA is resolved into six Gaussian components at each point in the melting transition.  相似文献   

5.
A mathematical model for the design of bubble-columns for growth of shear-sensitive insect cells is presented. The model is based on two assumptions. First, the loss of cell viability as a result of aeration is a first-order process. Second, a hypothetical volume X, in which all viable cells are killed, is associated with each air bubble during its lifetime. The model merely consists of an equation for k d, the first-order death-rate constant, and A min, the minimum specific surface area of the air bubbles to supply sufficient oxygen. In addition to X, the equation for k d contains the air flow F, the air-bubble diameter d b, the diameter D and the height H of the bubble column. This equation has been experimentally validated. Comparison of the equations for k d and A min shows that especially H is the key parameter to manipulate in bubble-column design in order to meet the demands set by A min and k dg, the first-order growth-rate constant. It is concluded that net growth of cells is enhanced as size and height of the bubble column increase.  相似文献   

6.
When 5α-reductase-sufficient genital skin fibroblast (GSF) monolayers are incubated with testosterone (T), they first form androgen (A)-receptor (R) complexes that dissociate at a fast rate [k(37°C = 0.024 min−1]. As T is converted to 5α-dihydrotestosterone (DHT), this population of T-R complexes is eventually replaced by one that dissociates much more slowly [k(37°C) = 0.006 min−1], at a rate typical of DHT-R complexes. During the course of T to DHT conversion, one may observe a population of A-R complexes that has a linear (monophasic) intermediate dissociation rate constant [k(37°C) = 0.012 min−1]; this population cannot simply reflect a mixture of T- and DHT-R complexes. The rate at which the complexes are processed from one dissociative form to the next varies with the incubation temperature and the presence or absence of serum in the medium; it also varies within and among GSF strains under apparently constant conditions. To explain these facts, we propose a model that enables the 5α-reductase enzyme to influence the processive dissociative behaviour of T-R complexes by engaging in some sort of coupling with the AR. The proposal is strengthened by a set of observations in cells with constitutive, mendelian or inhibitor-induced 5α-reductase deficiency that preclude a simple quantitative relation between A-R complex processing and the extent of T to DHT conversion.  相似文献   

7.
In the determination of the rates of oxygen consumption with a Clark-type oxygen electrode, and experimental error is caused by finite response time of the oxygen electrode for a rapid oxidation reaction. A theoretical equation between the observed pseudo first-order rate constant (kobs) and the true rate constant (k)
1kobs=1k+T
where T is a time constant for a first-order response of the oxygen electrode, was derived and found to hold up to k = 23 min?1 in oxidation of hydroquinone at pH 7.60–8.63.  相似文献   

8.
The potentiating effects of cyanide on the inhibition of rat liver mitochondrial monoamine oxidase-A & B and of ox liver mitochondrial MAO-B by pheniprazine [(1-methyl-2-phenylethyl)hydrazine] has been studied. Pheniprazine was shown to behave as a mechanism-based MAO inhibitor. For rat liver MAO-B, the initial non-covalent step was characterized by dissociation constant (K i) of 2450 nM and the first-order rate constant (k +2) for the covalent adduct formation was 0.16 min−1. As a reversible inhibitor it was selective towards rat liver MAO-A (K i = 420 nM) but the rate of irreversible inhibition of that enzyme was considerably slower (k +2 = 0.06 min−1). MAO-B from ox liver more closely resembled MAO-A from the rat in sensitivity to reversible inhibition by pheniprazine (K i = 450 nm) but it was closer to rat liver MAO-B in rate of irreversible inhibition (k +2 = 0.29 min−1). The K i values were significantly decreased in the presence of KCN but there was little effect on the k +2 values. However, sensitivities of the different enzymes to KCN varied widely and considerably higher concentrations of KCN were required for this effect to be apparent with the rat liver mitochondrial MAO-A than with MAO-B from rat and ox liver. The kinetic behaviour of cyanide activation was consistent with partial (non-essential) competitive activation in all cases. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

9.
Eight alternatively spliced isoforms of human 8‐oxoguanine DNA glycosylase (OGG1) (OGG1‐1a to ‐1c and ‐2a to ‐2e) are registered in the National Center for Biotechnology Information. OGG1(s) in mitochondria have not yet been fully characterized biochemically. In this study, we purified mitochondrial recombinant OGG1‐1b protein and compared its activity with nuclear OGG1‐1a protein. The reaction rate constant (kg) of the 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) glycosylase activity of OGG1‐1b was 8‐oxoG:C >> 8‐oxoG:T >> 8‐oxoG:G > 8‐oxoG:A (7.96, 0.805, 0.070, and 0.015 min?1, respectively) and that of the N‐glycosylase/DNA lyase activity (kgl) of OGG1‐1b was 8‐oxoG:C > 8‐oxoG:T ?8‐oxoG:G >> 8‐oxoG:A (0.286, 0.079, 0.040, and negligible min?1, respectively). These reaction rate constants were similar to those of OGG1‐1a except for kgl against 8‐oxoG:A. APEX nuclease 1 was required to promote DNA strand breakage by OGG1‐1b. These results suggest that OGG1‐1b is associated with 8‐oxoG cleavage in human mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1‐1a.  相似文献   

10.
The kinetics of ethidium's intercalative binding to DNA packaged in bacteriophage T7 and two T7 deletion mutants have been determined, using enhancement of fluorescence to quantitate binding. At a constant ethidium concentration, the results can be described as first-order binding with two different rate constants, k (= k1 + k?1) and k (= k2 + k?2). The larger rate constant (k) was at least four orders of magnitude smaller than the comparable first-order forward rate constant for binding to DNA released from its capsid. At 25°C values of k decreased as the amount of DNA packaged per internal volume increased. This latter observation indicates that the rate of ethidium's binding to packaged T7 DNA is limited by an event that occurs inside of the DNA-containing region of T7, not by the crossing of T7 capsid's outer shell. Arrhenius plots of kM are biphasic, indicating a transition for packaged DNA at a temperature of 20°C. The data indicate that k s are limited by either sieving of ethidium during its passage through the packaged DNA or subsequent hindered intercalation.  相似文献   

11.
V.P. Zhdanov  B. Kasemo 《Proteins》1998,30(2):168-176
Denaturation of model proteinlike molecules at the liquid–solid interface is simulated over a wide temperature range by employing the lattice Monte Carlo technique. Initially, the molecule containing 27 monomers of two types (A and B) is assumed to be adsorbed in the native folded state (a 3 × 3 × 3 cube) so that one of its sides is in contact with the surface. The details of the denaturation kinetics are found to be slightly dependent on the choice of the side, but the main qualitative conclusions hold for all the sides. In particular, the kinetics obey approximately the conventional first-order law at T > Tc (Tc is the collapse temperature for solution). With decreasing temperature, below Tc but above Tf (Tf is the folding temperature for solution), deviations appear from the first-order kinetics. For the most interesting temperatures, that is, below Tf, the denaturation kinetics are shown to be qualitatively different from the conventional ones. In particular, the denaturation process occurs via several intermediate steps due to trapping in metastable states. Mathematically, this means that (i) the transition to the denatured state of a given molecule is nonexponential, and (ii) the denaturation process cannot be described by a single rate constant kr. One should rather introduce a distribution of values of this rate constant (different values of kr correspond to the transitions to the altered state via different metastable states). Proteins 30:168–176, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Summary The changes in cell wall strength of Hansenula polymorpha have been investigated in continuous cultures with respect to the recovery of methanol oxidase (MOX). Cultures grown on several substrate mixtures that enable induction of MOX have been compared with cultures grown on methanol as the sole inducer. The effects of dilution rate (D) on lysis properties have been studied. The cell wall strength was consistently influenced by growth media and D. Media containing glycerol/methanol showed the slowest lysis kinetics, with a large fraction of non-degradable cell wall material. In continuous cultures grown on a mixture of glucose and methanol both the resistance to zymolyase and the mean cell wall thickness increased at D<0.1 h–1. The yield of MOX by zymolyase lysis is reproducible and up to 100% higher than that of the standard ultrasonic treatment. The lysis kinetics indicated that zymolyase punctures the cell wall; since the release rate of MOX is lower than that of protein, the cell contents will leak through. At D-values>0.2 h–1, both protein and MOX release rates increase, reflecting a change in lysis mechanism due to the increased fraction of thin daughter cells. Kinetic analysis of zymolyase lysis using both physical and enzymatic methods provides information for achieving optimal recovery of MOX.Abbreviations and symbols C MOX MOX activity [MOX units·g X–1] - D dilution rate [h–1] - MOX methanol oxidase - kc decay rate constant of A 610 nm [min–1] - kd decay constant of MOX activity [min–1] - kdis dissociation rate constant [min–1] - kMOX release rate constant of MOX activity [min–1] - kp release rate constant of protein [min–1] - R recovery efficiency of enzyme [-] - St stability of enzyme [-]  相似文献   

13.
The thermal stability of a highly purified preparation of D-amino acid oxidase from Trigonopsis variabilis (TvDAO), which does not show microheterogeneity due to the partial oxidation of Cys-108, was studied based on dependence of temperature (20–60°C) and protein concentration (5–100 µmol L?1). The time courses of loss of enzyme activity in 100 mmol L?1 potassium phosphate buffer, pH 8.0, are well described by a formal kinetic mechanism in which two parallel denaturation processes, partial thermal unfolding and dissociation of the FAD cofactor, combine to yield the overall inactivation rate. Estimates from global fitting of the data revealed that the first-order rate constant of the unfolding reaction (ka) increased 104-fold in response to an increase in temperature from 20 to 60°C. The rate constants of FAD release (kb) and binding (k?b) as well as the irreversible aggregation of the apo-enzyme (kagg) were less sensitive to changes in temperature, their activation energy (Ea) being about 52 kJ mol?1 in comparison with an Ea value of 185 kJ mol?1 for ka. The rate-determining step of TvDAO inactivation switched from FAD dissociation to unfolding at high temperatures. The model adequately described the effect of protein concentration on inactivation kinetics. Its predictions regarding the extent of FAD release and aggregation during thermal denaturation were confirmed by experiments. TvDAO is shown to contain two highly reactive cysteines per protein subunit whose modification with 5,5′-dithio-bis (2-nitrobenzoic acid) was accompanied by inactivation. Dithiothreitol (1 mmol L?1) enhanced up to 10-fold the recovery of enzyme activity during ion exchange chromatography of technical-grade TvDAO. However, it did not stabilize TvDAO at all temperatures and protein concentrations, suggesting that deactivation of cysteines was not responsible for thermal denaturation.  相似文献   

14.
We treat the problem of the mean time of complete separation of complementary chains of a duplex containing N base pairs. A combination of analytical and computer methods is used to obtain the exact solution in the form of a compact expression. This expression is used to analyze the limits of application of the equilibrium theory of helix–coil transition in oligo- and polynucleotides. It also allows the melting behavior of a biopolymer to be predicted when its melting is nonequilibrium. In the case of oligonucleotides for which the equilibrium melting takes place at a high value of the stability constant s, the general expression turns into the equation of Craig, Crothers, and Doty, used by them to determine the rate constant kf of the growth of a helical region from temperature-jump experiments. For the case of fragmented DNA with N ~ 102, the melting process is shown to be completely nonequilibrium, and as a result, the observed melting temperature should be higher than that for the equilibrium. A simple equation is obtained that makes possible calculation of the real, “kinetic” melting temperature Tk. As N increases, the observed melting temperature should approach the equilibrium value, Tm. This analysis has explained quantitatively the peculiar chain-length dependence of the experimentally observed shift in the DNA melting temperature during fragmentation. A thorough analysis is given of the nonequilibrium effects in the melting process of long DNA molecules (N ? 103). The main conclusion is that even in the presence of profound hysteresis phenomena, the melting profile observed on heating may differ only slightly from the equilibrium profile.  相似文献   

15.
It is a common practice to employ k cat[E]0/K m as a first-order rate constant for the analysis of an enzymatic reaction, where [E]0 is the total enzyme concentration. I describe in this report a serious shortcoming in analyzing enzymatic reactions when k cat[E]0/K m is employed and show that k cat[E]0/K m can only be applied under very limited conditions. I consequently propose the use of a more universal first-order rate constant, k cat[ES]K/[S]0, where [ES]K is the initial equilibrium concentration of the ES-complex derived from [E]0, [S]0 and K m. Employing k cat[ES]K/[S]0 as the first-order rate constant enables all enzymatic reactions to be reasonably simulated under a wide range of conditions, and the catalytic and binding contributions to the rate constant of any enzyme can be determined under any and all conditions.  相似文献   

16.
Human erythrocyte pyruvate kinase was modified with bromopyruvate and the kinetic behavior of the modified enzyme was investigated. When the enzyme was modified with bromopyruvate in the absence of adenosine-5′s-diphosphate, phospho-enolpyruvate or fructose-1,6-diphosphate the inactivation followed a pseudo first-order kinetics. The inactivation rate constant, ks, was 1.84 × 0.15 min?1. Kd of the bromopyruvate-enzyme complex was 0.14 × 0.03 mM.

The presence of adenosine-5′-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate in the modification medium or the presence of fructose-1,6-diphosphate in the assay medium resulted in deviation of the inactivation kinetics from pseudo first-order. Phosphoenolpyruvate was better than adenosine-5′-diphosphate for protection against bromopyruvate modification whereas fructose-1,6-diphosphate was ineffective. The modified enzyme showed negative cooperativity in the presence of fructose-1,6-diphosphate whereas in the absence of it no activity was detected.  相似文献   

17.
The thermal denaturation of the simple, redox-active iron protein rubredoxin is characterized by a slow, irreversible decay of the characteristic red color of the iron center at elevated temperatures in the presence of oxygen at pH 7.8. The denaturation rate is essentially constant and the time period for complete bleaching is nearly independent of protein concentration. These two characteristics of the kinetics can be fit by a simple self-catalyzed kinetics model consisting of the combination of a first-order decay and catalysis by some product of that decay, i.e., dP/dt=k 1[A]+(k 2[P][A])/(K m+[A]), where A is native rubredoxin, P, is unspecified product, k 1 is a first-order rate constant, and k 2 and K m are the catalytic constants. In order for the second term to be of this simple form over the full course of a decay, the model must include the condition that the reaction is effectively irreversible. This model has properties which suggest other biological roles in regulation (changes in k 1 or k 2 can dramatically modulate the kinetics), in timing (titer-independent fixed reaction time), and in self-activation reactions. At one extreme (k1 k2) the kinetics becomes exponential, but at the other extreme (k2 k1) they show a dramatic and rapid terminal increase after a lag period. Some obvious possible roles in the kinetics of programmed cell death, prion disease, and protease autoactivation are discussed.  相似文献   

18.
Summary A new, sensitive and continuous assay for -glucosidase is described exploiting the different angles of rotation for the substrate maltose and the product glucose. Kinetic experiments revealed a very pronounced product inhibition of -glucosidase fromSaccharomyces carlsbergensis with a Ki of 4.85·10–3 M for glucose.The KM of maltose was found to be 37.8·10–3 M. Taking these values, an integral kinetic curve for the enzymatic hydrolysis of maltose was calculated, which is shown to fit the experimental data.Symbols used k1 (min–1) pseudo first-order rate constant (for enzymatic cleavage) - k2 (min–1) rate constant (for mutarotation reaction) - I, P (mol/1) inhibitor (product) concentration - ki (mmol/1) inhibitor constant - KM (mmol/l) Michaelis constant - [M] 589 30 (degree/m · l/mol) molecular rotation at 30°C and 589 nm - s (mmol/l) substrate concentration - R (mmol/mg · min) reaction rate - Vmax (mmol/mg · min) maximal rate - U (mol/min) activity unit (here at 30°C and pH=6.8) Indices O initial value - max maximal value  相似文献   

19.
20.
L R Holman  D O Jordan 《Biopolymers》1972,11(8):1661-1684
DNA which has been heat denatured in the presence of Cu++ ions can be completely and rapidly renatured by increasing the ionic strength of the solution above a critical value. A kinetic study of this renaturation recation was carried out by following the associated UV absorbance change and also by following the change in free Cu++ ion concentration by means of a specific Cu++ ion activity electrode. The data obtained could be fitted to first-order kinetics for a considerable extent of the reaction and the rate constant was found to increase with temperature and ionic strength, but to decrease markedly as the bulk viscosity of the solution was increased. At temperatures greater than 5°C the reaction rate depended on the time elapsing between denaturation and the commencement of the renaturation reaction. As there was good agreement between the rate constants obtained by following the decrease in hyperchromism and by following the increase in free Cu++ ion concentration, it is concluded that under the conditions employed, the rate of renaturation is determined by the rate of release of Cu++ ions from the denatured DNA-Cu++ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号