首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Complementary impact of copepods and cladocerans on phytoplankton   总被引:9,自引:0,他引:9  
The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia , the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.  相似文献   

2.
The herbivorous Antarctic copepod Calanoides acutus overwinters inactively in a resting stage (diapause) at depths below 500 m. It is assumed that during diapause C. acutus is neutrally buoyant in order to retain energy reserves otherwise depleted by swimming activities. However, so far, no experimental observations on its buoyancy have been reported and our knowledge of buoyancy regulation mechanisms is incomplete. In the present study, species-specific differences in buoyancy were assessed visually. Observations were made of specimens from the diapausing cohort of C. acutus and compared to another herbivorous copepod Calanus propinquus, which overwinters actively feeding in the upper water layers. Freshly caught copepods were anaesthetized in a 3-amino-benzoic acid ethyl ester (MS222) in seawater solution in order to exclude the influence of swimming movements on buoyancy control. It was shown that C. propinquus was negatively buoyant, whereas diapausing C. acutus remained neutrally buoyant. This is the first record that neutral buoyancy in diapausing copepods is maintained by the biochemical body composition without the additional need of swimming movements.  相似文献   

3.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

4.
The present study aimed to investigate into the feeding ecology of the dominant copepods along a salinity gradient in Chikugo estuary. Copepod composition was studied from samples collected from stations positioned along the salinity gradient of the estuary. Copepod gut pigment concentrations were measured by fluorescence technique and hydrographical parameters such as temperature, salinity, transparency, suspended particulate matter (SPM); pigments such as chlorophyll-a (Chl-a), phaeopigment; and particulate nutrients such as particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured. Two distinct zones in terms of nutrient and pigment concentrations as well as copepod distribution and feeding were identified along the estuary. We identified a zone of turbidity maximum (TM) in the low saline upper estuary which was characterized by having higher SPM, higher POC and PON but lower POC:PON ratios, higher pigment concentrations but lower Chl-a/SPM ratios and higher copepod dry biomass. Sinocalanus sinensis was the single dominant copepod in low saline upper estuary where significantly higher concentrations of nutrients and pigments were recorded and a multispecies copepod assemblage dominated by common coastal copepods such as Acartia omorii, Oithona davisae and Paracalanus parvus was observed in the lower estuary where nutrient and pigment concentrations were lower. Copepods in the estuary are predominantly herbivorous, feeding primarily on pigment bearing plants. However, completely contrasting trophic environments were found in the upper and the lower estuary. It was speculated from the Chl-a and phaeopigment values that copepods in the upper estuary receive energy from a detritus-based food web while in the lower estuary an algal-based food web supports copepod growth. Overall, the upper estuary was identified to provide a better trophic environment for copepod and is associated with higher SPM concentrations and elevated turbidity. The study demonstrates the role of estuarine turbidity maximum (ETM) in habitat trophic richness for copepod feeding. The study points out the role of detritus-based food web as energy source for the endemic copepod S. sinensis in the upper estuary, which supports as nursery for many fish species.  相似文献   

5.
On coral reefs, the epilithic algal matrix (EAM) is widely recognised as an important resource for herbivorous and detritivorous fishes. In comparison, little is known of the interaction between benthic carnivores and the EAM, despite the abundance of Crustacea within the EAM. The trophic importance of the EAM to fishes was investigated in Pioneer Bay, Orpheus Island, Great Barrier Reef. Fish densities were quantified using visual and clove oil censuses, and gut content analyses conducted on abundant fish species. Crustaceans were found to be an important dietary category, contributing between 49.5 and 100 % of the gut contents, with harpacticoid copepods being the dominant component. Of the benthic carnivores, the goby Eviota zebrina was found to consume the most harpacticoids with a mean of 249 copepods m?2 day?1. This represents approximately 0.1 % of the available harpacticoid population in the EAM. In a striking comparison, herbivorous parrotfishes were estimated to consume over 12,000 harpacticoids m?2 day?1, over 27 times more than all benthic carnivores surveyed, representing approximately 5.3 % of the available harpacticoid copepod population each day. The high consumption of harpacticoid copepods by benthic carnivores and parrotfishes indicates that harpacticoids form an important trophic link between the EAM and higher trophic levels on coral reefs.  相似文献   

6.
Dengue fever is a mosquito-borne viral disease, whose main biological vector is Aedes aegypti. This mosquito colonizes tropical areas where the disease is endemic. The most obvious action against dengue is attacking its vector. Biological control appears to be an alternative approach, using natural enemies of the mosquitoes, such as predatory copepods. Thus, the morphological study of the damage caused by copepods is important to understand its predatory capacity. Twenty-five A. aegypti larvae were exposed to the copepod Mesocyclops thermocyclopoides and the damage caused by the copepods was evaluated using scanning electron microscopy. The larvae showed damage mainly at the anal segment, the siphon and the abdomen; only three attacks to the head were observed. The size of the siphon might be of importance in determining whether or not a copepod will attack a mosquito larva.  相似文献   

7.
We investigated whether phosphorus limitations of primary producers propagate upwards through the food web, not only to the primary consumer level but also onto the secondary consumers’ level. A tri-trophic food chain was used to assess the effects of phosphorus-limited phytoplankton (the cryptophyte Rhodomonas salina) on herbivorous zooplankters (the copepod Acartia tonsa) and finally on zooplanktivores (the ctenophore Pleurobrachia pileus). The algae were cultured in phosphorus-replete and phosphorus-limited media before being fed to two groups of copepods. The copepods in turn were fed to the top predator, P. pileus, in a mixture resulting in a phosphorus-gradient, ranging from copepods having received only phosphorus-replete algae to copepods reared solely on phosphorus-limited algae. The C:P ratio of the algae varied significantly between the two treatments, resulting in higher C:P ratios for those copepods feeding on phosphorus-limited algae, albeit with a significance of 0.07. The differences in the feeding environment of the copepods could be followed to Pleurobrachia pileus. Contrary to our expectations, we found that phosphorus-limited copepods represented a higher quality food source for P. pileus, as shown by the better condition (expressed as nucleic acid content) of the ctenophore. This could possibly be explained by the rather high C:P ratios of ctenophores, their resulting low phosphorus demand and relative insensitivity to P deficiency. This might potentially be an additional explanation for the observed increasing abundances of gelatinous zooplankton in our increasingly phosphorus-limited coastal seas.  相似文献   

8.
The copepod community on the Faroe shelf is dominated by Calanus finmarchicus, Temora longicornis, Acartia longiremis and Pseudocalanus spp. The species composition, abundance and development of the copepod community varied considerably during the season 2004. These variations reflected to a large extent the different life strategies of the copepods. Both nauplii and copepodites of C. finmarchicus were most abundant during spring and early summer. The two neritic copepods T. longicornis and A. longiremis were present in low numbers during spring but dominated the copepod community later during the productive period. Pseudocalanus spp., on the other hand, occurred throughout the year, but showed no clear numerical response in abundance to the spring bloom. The egg production measurements of C. finmarchicus and T. longicornis showed some pre-bloom egg production, but as the spring bloom started the egg production rate increased significantly, especially for C. finmarchicus. There seemed to be a substantial loss of nauplii and copepods from the shelf ecosystem during the productive season. It was, however, not possible to determine whether this was mainly due to mortality or advective loss.  相似文献   

9.
Zooplankton grazing impact on algae, heterotrophic flagellates and bacteria, as well as invertebrate predation on herbivorous zooplankton, were investigated in two sub-Antarctic lakes with extremely simple food chains. The two species of herbivorous zooplankton present in the lakes (the copepods boeckella michaelseni and Pseudoboeckella poppei) exerted substantial grazing pressure on algae. However, the dominant algal species exhibited properties that enabled them to avoid (large size or extruding spines, e.g. Staurastrum sp., Tribonema sp.) or compensate (recruitment from the sediment, Mallomonas sp.) grazing. There are only two potential invertebrate predators on the herbivorous copepods in the two lakes: the copepod Parabroteas sarsi and the diving beetle Lancetes claussi. Vertebrate predators are entirely abscent from sub-Antarctic lakes. Based on our experiments, we estimated that the predators would remove at most about 0.4% of the herbivorous copepods per day, whereas planktivorous fish, if present in the lakes, would have removed 5–17% of the zooplankton each day. Consequently, the invertebrate predators in these high-latitude lakes had only a marginal predation impact compared to the predation pressure on zooplankton in the presence of vertebrate predators in temperate lakes. The study of these simple systems with only two quantitatively functionally important trophic links, suggests that high grazing pressure foreces the algal community towards forms with grazer resistant adaptations such as large size, recruitment from another habitat, and grazer avoidance spines. We propose that due to such adaptations, predictions from food web theory are only partly corroborated, i.e. algal biomass actually increases with increasing productivity, although the grazer community is released from predation. In more species-rich and complex systems, e.g temperate lakes with three functionally important links, such adaptations are likely to be even more important, and, consequently, the observable effects of trophic interactions from top predators on lower trophic levels even more obscured.  相似文献   

10.
Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.  相似文献   

11.
The vertical distribution of meiobenthic copepods was investigated within muddy sediments of a eutrophic lagoon (fish ponds of Arcachon Bay, France). The aim of the study was to determine if in muddy sediments, as previously established in sandy sediments, meiobenthic copepods migrate vertically according to the seasons or diel periods. Two experimental approaches were used, viz: a three-season comparison was made of the diel vertical distribution of the harpacticoid Canuella perplexa T. & A. Scott (1893) and secondly the depth distribution of a meiobenthic copepod assemblage was followed for a 24 h period, in shallow water subtidal locations. The harpacticoid C. perplexa vertically migrated through the top three centimeters of the sediment, showing diel and seasonal variations in depth distribution. The differential vertical distributions shown by the dominant meiobenthic populations suggest that emergence into the water column may mainly concern surface dwelling copepods. The physical and biological factors affecting seasonal and diel changes in the copepod assemblage of the fish ponds are discussed.  相似文献   

12.
The estuarine copepod Acartia tonsa naturally carried diverse strains of bacteria on its body. The bacterial community composition (BCC) remained very conservative even when the copepod was fed different axenic algal species, indicating that the food per se did not much affect BCC associated with the copepod. In xenic algal treatments, however, copepod-associated BCC differed with each alga fed, even though the same bacterial source was used to inoculate the algae. In addition, starved copepods taken at the same location but at different times significantly differed in their BCC. Algal species composition and copepod life history therefore serve to regulate BCC associated with copepods, and spatial and temporal variations in algal species composition and copepod origin would alter bacteria–copepod interactions.  相似文献   

13.
Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause.  相似文献   

14.
This study evaluates food supply for copepods, highlighting the trophic relationship between copepods and protozooplankton. To test the hypotheses that protozooplankton prey are capable of sustaining the copepod standing stock in the western Irish Sea, the taxonomic and size composition of these two groups and the size-specific predation of copepods on protozooplankton were investigated. Protozooplankton and copepod samples were collected off the southwest coast of the Isle of Man using 1.7 l Niskin water bottles and two nets (64 and 280 μm meshes), respectively. Copepod predation on protozooplankton was calculated using weight-specific clearance rates from the literature, considering the availability of prey that was accessible to a given size of copepod. Low protozooplankton biomass was dominated by small cells (<60 μm), and high copepod biomass was dominated by small species, which were more efficiently collected by a 64-μm mesh net. However, large copepods were only collected by a 280-μm mesh net, suggesting that the combination of the two nets provided a better estimate of copepod biomass. Predation by the copepod assemblage in the Irish Sea removed 1–47% and 0.5–22% of ciliates and dinoflagellates standing stock, respectively, resulting in 1–40% of the copepod feeding requirement per day. Contrary to our hypothesis, copepods could not meet their feeding requirements by grazing only on the microzooplankton prey (15–200 μm), and other food sources (i.e. nanoplankton) must be important additional dietary components to copepods in the Irish Sea. Handling editor: S. M. Thomaz  相似文献   

15.
1. Density gradients of cladocerans and copepods were generated in an enclosure experiment to compare the impact on the plankton of a filter feeder (Daphnia hyalina × galeata) with that of more selective feeders (calanoid and cyclopoid copepods). The experiment was conducted in situ over 25 days during spring in a mesotrophic lake, Schöhsee, Germany. 2. The plankton community was monitored regularly. Daphniids were able to graze on the phytoplankton present, which mainly consisted of small (<1000 μm3) species, whereas copepods did not show any impact on algae. 3. At the end of the experiment, Daphnia and remaining cyclopoid copepods were harvested and sorted manually, prior to analyses for stable isotopes of carbon and nitrogen. Daphniids from mesocosms stocked purely with differing densities of Daphnia showed little variability in stable isotope values, whereas those that thrived in enclosure bags together with copepods exhibited lower δ13C values. 4. The change in Daphniaδ13C indicates a change of food sources, modified by the presence of the copepods: the higher the mean abundance of copepods in the enclosures, the more 13C‐depleted the daphniids. Increasing abundance of high nucleic acid (HNA) bacteria in the copepod bags may account for the trend in Daphniaδ13C via increased grazing on the bacteria themselves, or via grazing on phytoplankton utilising isotopically light CO2 from respiratory release. 5. Cyclopoid copepod stable isotope signatures were related to Daphnia and copepod abundances in copepod bags, suggesting that cyclopoids preyed on the available zooplankton.  相似文献   

16.
The zooplankton biomass of Lake Boeckella (Hope Bay, Antarctic Peninsula) is strongly dominated by the calanoid copepod Boeckella poppei Mrázek. This work analyses the grazing impact of this copepod on the two dominant fractions of phytoplankton, pico- and nanoplankton, and on the bacterioplankton. By means of in-situ experiments using microcosms, the following hypotheses were tested: (a) the early stages of the copepod mainly graze on phytoplankton; (b) the pre-adult and adult stages graze on phytoplankton and benthic algae. Copepods were separated into two groups of maturity: early stages, and pre-adult and adult stages. The following treatments were performed: (1) only nano- and picoplankton, (2) nano- and picoplankton+periphyton, and (3) only periphyton, for each one of the two copepod maturity groups, and (4) control (without copepods). The variation in nano-phytoplankton density was analysed after 2 and 4 days. The results determined a significant grazing on the nano-phytoplankton fraction in all microcosms containing copepods of both maturity groups (P<0.01). The effect on the nano-phytoplankton was greater when the copepods did not have another source of food (P<0.01). No significant differences between the maturity groups were observed (P>0.05). We also conclude that the copepods use the periphyton as an alternative source of food, which was corroborated by the analysis of gut content. In general, no significant differences among treatments were recorded for the pico-sized fraction (pico-phytoplankton and bacterioplankton), which would suggest that no direct grazing on this fraction exists.  相似文献   

17.
The resettlement behavior of meiobenthic copepods, which actively migrated from sediments in a seagrass bed, was investigated in a shallow subtidal area in Tampa Bay, Florida, U.S.A. Experimental studies were conducted to determine whether meiobenthic copepods after emerging from sediments at sunset reenter the sedimentary substratum or select other subhabitats, water and seagrass blades. Migrating copepods were collected with emergence traps and transferred to experimental aquaria in the field which contained sediment, seagrass-blade and water treatments. Settlement into each type of treatment was measured in separate 2-h and 9-h experiments. Differences in densities of copepod taxa retrieved from emergence traps and introduced into experimental aquaria were recorded as were differing relative proportions of each copepod species returning to the substratum treatments. Settlement patterns of total copepods and three dominant copepod species, Zausodes arenicolus, Halicyclops sp. and Robertsonia hamata, departed from those expected by chance. The populations of R. hamata and Halicyclops sp. which settled were generally skewed towards males and a close matching of males and copepodites within treatment dishes was evident. Similar to nighttime-emergence patterns, timing and magnitude of postmigration reentry differs among copepod taxa and such reentry may be linked to reproductive events. Complex behavioral processes previously noted for fish and macrofaunal organisms in seagrass beds may also be important in recruitment and reassortment of meiobenthic copepods.  相似文献   

18.
Marine planktonic copepods are important grazers on harmful algae (HA) species of phytoplankton, and copepods are major entry points for vectorial intoxication of pelagic food webs with HA toxins. Previous reviews (Turner and Tester, 1997, Turner et al., 1998a, Turner, 2006) summarized information on HA interactions with zooplankton grazers, and vectorial intoxication of pelagic food webs, up through approximately 2005. Accordingly, this review will address primarily studies published during the last decade. It will concentrate on generic issues in the developing field of HA:grazer interactions, such as the extent to which HA toxins serve as copepod grazing deterrents, induction of HA grazing deterrents by exposure to copepods, copepod selective feeding to avoid ingesting HA taxa versus non-selective feeding on HA taxa, possible biogeographic aspects of the effects of HA toxins on copepods, impact of copepod grazing on HA bloom development and termination, the role of copepods as entry points for vectorial intoxication of pelagic food webs with HA toxins, and possible reasons and remedies for the highly-variable and conflicting results reported for many studies of copepod grazing on various HA species.  相似文献   

19.
Kiørboe  Thomas 《Hydrobiologia》1997,363(1-3):13-27
Copepods constitute the majority of the mesozooplankton in the oceans.By eating and being eaten copepods have implications for the flow of matterand energy in the pelagic environment. I first consider populationregulation mechanisms in copepods by briefly reviewing estimates of growthand mortality rates and evidence of predation and resource limitation. Theeffects of variations in fecundity and mortality rates for the demography ofcopepod populations are then examined by a simple model, which demonstratesthat population growth rates are much more sensitive to variations inmortality than to variations in fecundity. This is consistent with theobserved tremendous variation in copepod fecundity rates, relatively low andconstant mortality rates and with morphological and behavioralcharacteristics of pelagic copepods (e.g., predator perception and escapecapability, vertical migration), which can all be considered adaptations topredator avoidance. The prey populations of copepods, mainly protozoa(ciliates) and phytoplankton, may be influenced by copepod predation tovarying degrees. The highly variable morphology and the population dynamics(e.g., bloom formation) of the most important phytoplankton prey populations(diatoms, dinoflagellates) suggest that predation plays a secondary role incontrolling their dynamics; availability of light and nutrients as well ascoagulation and sedimentation appear generally to be more important. Thelimited morphological variation of planktonic ciliates, the well developedpredator perception and escape capability of some species, and the oftenresource-unlimited in situ growth rates of ciliates, on the other hand,suggest that copepod predation is important for the dynamics of theirpopulations. I finally examine the implications of mesozooplankton activityfor plankton food webs, particularly their role in retarding vertical fluxesand, thus, the loss of material from the euphotic zone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
An analysis of the diet of 0+ perch, smelt and roach caught at night of the pelagial of a mesotrophic lake showed that their food was composed mainly of herbivorous and predatory cladocerans, copepods and Chaoborus larvae during summer, and of herbivorous cladocerans and copepods during October. An analysis of habitat use by juveniles revealed separation among the species: roach occurred in the upper, perch and smelt in the deeper water layers. Food and habitat were alternatively partitioned among the juveniles. In early summer the lowest food overlap between perch and smelt coincided with high habitat overlap. In October high food overlap between perch and smelt corresponded with low habitat overlap. Smelt and roach fry used common food resources throughout the season, but they were segregated in habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号