首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exquisite control of cholesterol synthesis is crucial for maintaining homeostasis of this vital yet potentially toxic lipid. Squalene monooxygenase (SM) catalyzes the first oxygenation step in cholesterol synthesis, acting on squalene before cyclization into the basic steroid structure. Using model cell systems, we found that cholesterol caused the accumulation of the substrate squalene, suggesting that SM may serve as a flux-controlling enzyme beyond 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR, considered as rate limiting). Cholesterol accelerated the proteasomal degradation of SM which required the N-terminal domain, partially conserved in vertebrates but not in lower organisms. Unlike HMGR, SM degradation is not mediated by Insig, 24,25-dihydrolanosterol, or side-chain oxysterols, but rather by cholesterol itself. Importantly, SM's N-terminal domain conferred cholesterol-regulated turnover on heterologous fusion proteins. Furthermore, proteasomal inhibition almost totally eliminated squalene accumulation, highlighting the importance of this degradation mechanism for the control of SM and suggesting this as a possible control point in cholesterol synthesis.  相似文献   

2.
Squalene epoxidase as hypocholesterolemic drug target revisited   总被引:1,自引:0,他引:1  
Therapeutic success of statins has distinctly established inhibition of de novo hepatic cholesterol synthesis as an effective approach to lower plasma LDL-cholesterol, the major risk factor for atherosclerosis and coronary heart disease. Statins inhibit HMG CoA reductase, a rate limiting enzyme which catalyses conversion of HMG CoA to mevalonic acid. However, in this process statins also inhibit the synthesis of several non-sterols e.g. dolichols and ubiquinone, which are implicated in side effects observed with statins. This prompted many major pharmaceutical companies in 1990s to target selective cholesterol synthesis beyond farnesyl pyrophosphate. The enzymes squalene synthetase, squalene epoxidase and oxidosqualene cyclase were identified as potential targets. Though inhibitors of these enzymes have been developed, till date no compound has been reported to have entered clinical trials. We evaluated the literature to understand merits and demerits of pursuing squalene epoxidase as a target for hypocholesterolemic drug development. Squalene epoxidase catalyses the conversion of squalene to 2,3-oxidosqualene. Although it has been extensively exploited for antifungal drug development, it has received little attention as a target for hypocholesterolemic drug design. This enzyme though recognized in the early 1970s was cloned 25 years later. This enzyme is an attractive step for pharmacotherapeutic intervention as it is the secondary rate limiting enzyme and blocking cholesterol synthesis at this step may result in accumulation of only squalene which is known to be stable and non toxic. Synthesis of several potent, orally bioavailable inhibitors of squalene epoxidase has been reported from Yamonuchi, Pierre Fabre and Banyu pharmaceuticals. Preclinical studies with these inhibitors have clearly demonstrated the potential of squalene epoxidase inhibitors as hypocholesterolemic agents. Hypochloesterolemic therapy is intended for prolonged duration and safety is an important determinant in clinical success. Lack of clinical trials, despite demonstrated preclinical efficacy by oral route, prompted us to evaluate safety concerns with squalene epoxidase inhibitors. In dogs, NB-598, a potent competitive squalene epoxidase inhibitor has been reported to exhibit signs of dermatitis like toxicity which has been attributed by some reviewers to accumulation of squalene in skin cells. Tellurium, a non-competitive inhibitor of squalene epoxidase has been associated with neuropathy in weanling rats. On the other hand, increased plasma levels of squalene in animals and humans (such as occurring subsequent to dietary olive oil or squalene administration) are safe and associated with beneficial effect such as chemoprevention and hypocholesterolemic activity. In our view, high circulating levels of squalene epoxidase inhibitor may be responsible for dermatitis and neuropathy. Competitive inhibition and pharmacokinetic profile minimizing circulating plasma levels (e.g. by hepatic sequestration and high first pass metabolism) could be important determinants in circumventing safety concerns of squalene epoxidase inhibitors. Recently, cholesterol-lowering effect of green tea has been attributed to potent squalene epoxidase inhibition, which can be consumed in much higher doses without toxicological effect. These facts strengthen optimism for developing clinically safe squalene epoxidase inhibitors. Put in perspective squalene epoxidase appears to be undervalued target which merits attention for development of better hypocholesterolemic drugs.  相似文献   

3.
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane–associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin''s antiviral effects against enveloped viruses.  相似文献   

4.
The mevalonate pathway is used by cells to produce sterol and nonsterol metabolites and is subject to tight metabolic regulation. We recently reported that squalene monooxygenase (SM), an enzyme controlling a rate-limiting step in cholesterol biosynthesis, is subject to cholesterol-dependent proteasomal degradation. However, the E3-ubiquitin (E3) ligase mediating this effect was not established. Using a candidate approach, we identify the E3 ligase membrane-associated RING finger 6 (MARCH6, also known as TEB4) as the ligase controlling degradation of SM. We find that MARCH6 and SM physically interact, and consistent with MARCH6 acting as an E3 ligase, its overexpression reduces SM abundance in a RING-dependent manner. Reciprocally, knockdown of MARCH6 increases the level of SM protein and prevents its cholesterol-regulated degradation. Additionally, this increases cell-associated SM activity but is unexpectedly accompanied by increased flux upstream of SM. Prompted by this observation, we found that knockdown of MARCH6 also controls the level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) in hepatocytes and model cell lines. In conclusion, MARCH6 controls abundance of both SM and HMGCR, establishing it as a major regulator of flux through the cholesterol synthesis pathway.  相似文献   

5.
The histone methyltransferase EZH2 silences gene expression via H3 lysine 27 trimethylation and has been recognized as an important antitumour therapeutic target. However, the clinical application of existing EZH2 inhibitors is not satisfactory for the treatment of solid tumours. To discover novel strategies against head and neck squamous cell carcinoma (HNSCC), we performed genomics, metabolomics and RNA omics studies in HNSCC cells treated with EZH2 inhibitors. It was found that EZH2 inhibitors strongly induced the expression of genes in cholesterol synthesis. Through extensive drug screening we found that inhibition of squalene epoxidase (a key enzyme of endogenous cholesterol synthesis) synergistically increased the squalene content and enhanced the sensitivity of HNSCC cells to EZH2 inhibitors. Our findings provide an experimental and theoretical basis for the development of new combinations of EZH2 inhibitors to treat HNSCC.Subject terms: Cancer metabolism, Translational research  相似文献   

6.
Squalene monooxygenase - a target for hypercholesterolemic therapy   总被引:1,自引:0,他引:1  
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.  相似文献   

7.
2,3-Oxidosqualene is an intermediate in cholesterol biosynthesis and 2,3:22,23-dioxidosqualene act as the substrate for an alternative pathway that produces 24(S),25-epoxycholesterol which effects cholesterol homeostasis. In light of our previous findings concerning the biological effects of certain epoxidated all-trans-polyisoprenes, the effects of squalene carrying epoxy moieties on the second and third isoprene residues were investigated here. In cultures of HepG2 cells both monoepoxides of squalene and one of their hydrolytic products inhibited cholesterol synthesis and stimulated the synthesis of coenzyme Q (CoQ). Upon prolonged treatment the cholesterol content of these cells and its labeling with [3H]mevalonate were reduced, while the amount and labeling of CoQ increased. Injection of the squalene monoepoxides into mice once daily for 6 days elevated the level of CoQ in their blood, but did not change the cholesterol level. The same effects were observed upon treatment of apoE-deficient mice and diabetic GK-rats. This treatment increased the hepatic level of CoQ10 in mice, but the amount of CoQ9, which is the major form, was unaffected. The presence of the active compounds in the blood was supported by the finding that cholesterol synthesis in the white blood cells was inhibited. Since the ratio of CoQ9/CoQ10 varies depending on the experimental conditions, the cells were titrated with substrate and inhibitors, leading to the conclusion that the intracellular isopentenyl-PP pool is a regulator of this ratio. Our present findings indicate that oxidosqualenes may be useful for stimulating both the synthesis and level of CoQ both in vitro and in vivo.  相似文献   

8.
Cytochrome P450 17alpha-hydroxylase/17,20-lyase (CYP17) is a microsomal enzyme catalyzing two distinct activities, 17alpha-hydroxylase and 17,20-lyase, essential for the biosynthesis of adrenal and gonadal steroids. CYP17 is a potent oxidant, it is present in liver and nonsteroidogenic tissues, and it has been suggested to have catalytic properties distinct to its function in steroid metabolism. To identify CYP17 functions distinct of its 17alpha-hydroxylase/17,20-lyase activity, we used MA-10 mouse tumor Leydig cells known to be defective in 17alpha-hydroxylase/17,20-lyase activity. A CYP17 knocked down MA-10 clone (MA-10(CYP17KD)) was generated by homologous recombination and its steroidogenic capacity was compared with wild-type cells (MA-10(wt)). Although no differences in cell morphology and proliferation rates were observed between these cells, the human chorionic gonadotropin-induced progesterone formation and de novo synthesis of steroids were dramatically reduced in MA-10(CYP17KD) cells; their steroidogenic ability could be rescued in part by transfecting CYP17 DNA into the cells. Knocking down CYP17 mRNA by RNA interference yielded similar results. However, no significant difference was observed in the steroidogenic ability of cells treated with 22R-hydroxycholesterol, which suggested a defect in cholesterol biosynthesis. Incubation of MA-10(CYP17KD) cells with (14)C-labeled squalene resulted in the formation of reduced amounts of radiolabeled cholesterol compared with MA-10(wt) cells. In addition, treatment of MA-10(CYP17KD) cells with various cholesterol substrates indicated that unlike squalene, addition of squalene epoxide, lanosterol, zymosterol, and desmosterol could rescue the hormone-induced progesterone formation. Further in vitro studies demonstrated that expression of mouse CYP17 in bacteria resulted in the expression of squalene monooxygenase activity. In conclusion, these studies suggest that CYP17, in addition to its 17alpha-hydroxylase/17,20-lyase activity, critical in androgen formation, also expresses a secondary activity, squalene monooxygenase (epoxidase), of a well-established enzyme involved in cholesterol biosynthesis, which may become critical under certain conditions.  相似文献   

9.
Supernatant protein factor (SPF) is a 46-kDa cytosolic protein that stimulates squalene monooxygenase in vitro and, unexpectedly, cholesterol synthesis in cell culture. Because squalene monooxygenase is not thought to be rate-limiting with regard to cholesterol synthesis, we investigated the possibility that SPF might stimulate other enzymes in the cholesterol biosynthetic pathway. Substitution of [(14)C]mevalonate for [(14)C]acetate in McARH7777 hepatoma cells expressing SPF reduced the 1.8-fold increase in cholesterol synthesis by half, suggesting that SPF acted on or prior to mevalonate synthesis. This conclusion was supported by the finding that substitution with [(14)C]mevalonate completely blocked an SPF-induced increase in squalene synthesis. Evaluation of 2,3-oxidosqualene synthesis from [(14)C]mevalonate demonstrated that SPF also stimulated squalene monooxygenase (1.3-fold) in hepatoma cells. Immunoblot analysis showed that SPF did not increase HMG-CoA reductase or squalene monooxygenase enzyme levels, indicating a direct effect on enzyme activity. Addition of purified recombinant SPF to rat liver microsomes stimulated HMG-CoA reductase by about 1.5-fold, and the SPF-concentration/activation curve paralleled that for the SPF-mediated stimulation of squalene monooxygenase. These results reveal that SPF directly stimulates HMG-CoA reductase, the rate-limiting step of the cholesterol biosynthetic pathway, as well as squalene monooxygenase, and suggest a new means by which cholesterol synthesis can be rapidly modulated in response to hormonal and environmental signals.  相似文献   

10.
11.
12.
13.
The biosynthesis of C27 sterols (used as a generic term for 3 β-hydroxysterols containing 27 carbon atoms) from squalene and lanosterol, of cholesterol from desmosterol, and of lanosterol from squalene by microsomal fractions from adult rat heart, kidney, and brain was investigated. These conversions required the presence of 105,000g supernatant fraction. Heat treatment of the supernatant fractions resulted in a significant loss of their capacity to stimulate the conversion of squalene to sterols, but the capacity to stimulate conversion of lanosterol to C27 sterols and desmosterol to cholesterol was unaffected. The stimulatory activity (for the conversion of all three substrates) of both the heated and unheated supernatant fractions was lost on treatment with trypsin. Thus the soluble fraction appears to contribute at least two essential protein components for the overall conversion of squalene to cholesterol; one a heat labile protein, which functions in the squalene to lanosterol sequence, and the other a heat-stable protein, which is operative in the pathway between lanosterol and cholesterol. Hepatic supernatant factors required for cholesterol synthesis by liver microsomal enzymes function with heart, kidney, and brain microsomal enzymes in stimulating sterol synthesis from squalene and sterol precursors. Moreover, heart, kidney, and brain supernatant fractions prepared in 100 mm phosphate buffer stimulated cholesterol synthesis from squalene and other sterol precursors by liver microsomes. The supernatant fractions of the extrahepatic tissues prepared in 20 mm phosphate buffer lacked the ability to stimulate the biosynthesis of lanosterol from squalene by liver microsomes but were able to stimulate the conversion of lanosterol to C27 sterols or conversion of desmosterol to cholesterol. These findings indicate that the heat-stable protein factor present in the supernatant fractions from extrahepatic tissues is perhaps identical to that in liver, but that the heat-labile factor in extrahepatic tissues, which catalyzes the cyclization of squalene to lanosterol, differs in some respect from that in liver.  相似文献   

14.
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin–proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.  相似文献   

15.
Squalene, a key intermediate of cholesterol synthesis, is present especially in olive oil. Regulation of cholesterol metabolism by dietary squalene in man is unknown, even though olive oil users in Mediterranean areas have low serum cholesterol levels. We have investigated absorption and serum levels of squalene and cholesterol and cholesterol synthesis with the sterol balance technique and serum levels of cholesterol precursors in humans during squalene feeding (900 mg/d for 7-30 days). The results were compared with those during cholestyramine treatment. Fecal analysis suggested that about 60% of dietary squalene was absorbed. Serum squalene levels were increased 17 times, but serum triglyceride and cholesterol contents were unchanged. The squalene feeding significantly (P less than 0.05) increased serum levels of free (1.7-2.3 times) and esterified (1.9-2.4 times) methyl sterol contents, while elevations of free and esterified delta 8-cholesterol and lathosterol levels were inconsistent. Cholestyramine treatment modestly augmented free methyl sterol levels (1.3-1.7 times), less consistently than those of esterified ones, while, in contrast to the squalene feeding, serum contents of free and esterified delta 8-cholesterol and lathosterol were dramatically increased (3.3-8 times). Neither of the treatments significantly affected serum plant sterol and cholestanol levels. The squalene feeding had no consistent effect on absorption efficiency of cholesterol, but significantly increased (paired t-test, P less than 0.05) the fecal excretions of cholesterol and its nonpolar derivatives coprostanol, epicoprostanol, and coprostanone (655 +/- 83 SE to 856 +/- 146 mg/d) and bile acids (212 +/- 24 to 255 +/- 24 mg/d), indicating an increase of cholesterol synthesis by about 50%. We suggest that a substantial amount of dietary squalene is absorbed and converted to cholesterol in humans, but this squalene-induced increase in synthesis is not associated with consistent increases of serum cholesterol levels. The clearly increased serum contents of esterified methyl sterols may reflect stimulated tissue acyl CoA: cholesterol acyltransferase (ACAT, EC 2.3.1.26) activity during squalene feeding as these sterols are not esterified in serum.  相似文献   

16.
Squalene monooxygenase is a microsomal enzyme that catalyzes the conversion of squalene to 2,3(s)-oxidosqualene, the immediate precursor to lanosterol in the cholesterol biosynthesis pathway. Unlike other flavoprotein monooxygenases that obtain electrons directly from NAD(P)H, squalene monooxygenase requires a redox partner, and for many years it has been assumed that NADPH-cytochrome P450 reductase is this requisite redox partner. However, our studies with hepatic cytochrome P450-reductase-null mice have revealed a second microsomal reductase for squalene monooxygenase. Inhibition studies with antibody to P450 reductase indicate that this second reductase supports up to 40% of the monooxygenase activity that is obtained with microsomes from normal mice. Studies carried out with hepatocytes from CPR-null mice demonstrate that this second reductase is active in whole cells and leads to the accumulation of 24-dihydrolanosterol; this lanosterol metabolite also accumulates in the livers of CPR-null mice, indicating that cholesterol synthesis is blocked at lanosterol demethylase, a cytochrome P450.  相似文献   

17.
Sites of control of hepatic cholesterol biosynthesis   总被引:9,自引:0,他引:9  
An inhibition in the conversion of mevalonate to cholesterol has been demonstrated in liver of cholesterol-fed rats by both in vitro and in vivo methods. Synthesis decreased to 30% of the control value after 1 week and 20% after 1 month on a 1% cholesterol diet. After a year, synthesis from mevalonate was almost completely inhibited. The rate of conversion of squalene to cholesterol was not consistently decreased but that of farnesyl pyrophosphate to cholesterol was decreased considerably. The rate of conversion of mevalonate to farnesyl pyrophosphate by a soluble liver enzyme preparation was also decreased in cholesterol-fed animals. Sites of inhibition of cholesterol synthesis were detected before mevalonate, between mevalonate and farnesyl pyrophosphate, and after farnesyl pyrophosphate, probably at the conversion of farnesyl pyrophosphate to squalene. The inhibition of mevalonate conversion to cholesterol developed more slowly than that of acetate and appeared to be secondary to it. The maximum capacities of normal liver homogenates and slices to synthesize cholesterol from mevalonate were shown to be far greater than from acetate. Consequently, sites of inhibition after mevalonate probably do not have a significant effect on the over-all rate of cholesterol synthesis in the intact cholesterol-fed animal.  相似文献   

18.
We examined serum cholesterol synthesis and absorption markers and their association with neonatal birth weight in obese pregnancies affected by gestational diabetes mellitus (GDM). Pregnant women at risk for GDM (BMI >30 kg/m2) were enrolled from maternity clinics in Finland. GDM was determined from the results of an oral glucose tolerance test. Serum samples were collected at six time-points, one in each trimester of pregnancy, and at 6 weeks, 6 months, and 12 months postpartum. Analysis of serum squalene and noncholesterol sterols by gas-liquid chromatography revealed that in subjects with GDM (n = 22), the serum Δ8-cholestenol concentration and lathosterol/sitosterol ratio were higher (P < 0.05) than in the controls (n = 30) in the first trimester, reflecting increased cholesterol synthesis. Also, subjects with GDM had an increased ratio of squalene to cholesterol (100 × μmol/mmol of cholesterol) in the second (11.5 ± 0.5 vs. 9.1 ± 0.5, P < 0.01) and third (12.1 ± 0.8 vs. 10.0 ± 0.7, P < 0.05) trimester. In GDM, the second trimester maternal serum squalene concentration correlated with neonatal birth weight (r = 0.70, P < 0.001). In conclusion, in obesity, GDM associated with elevated serum markers of cholesterol synthesis. Correlation of maternal serum squalene with neonatal birth weight suggests a potential contribution of maternal cholesterol synthesis to newborn weight in GDM.  相似文献   

19.
The diseases caused by dermatophytes are common among several other infections which cause serious threat to human health. It is evident that enzyme squalene epoxidase is responsible for prolonged dermatophyte infection and it is appealing to note that this enzyme is also responsible for fatty acid synthesis in these groups of fungi. In the present study, terbinafine drug which targets enzyme squalene epoxidase has been explored to design its various novel analogues. The present study suggests that many more prominent drug analogues could be constituted which may be crucial towards designing new drug candidates. In the present study, we have designed a series of such analogues viz. [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl)amine, N-[8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]-2-(sulfoamino) acetamide, {[4-(dihydroxyamino)-8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]sulfanyl}methanol and (R)-{[4-({[(2E,6R)-6,7-dimethyloct-2-en-4-yn-1-yl](methyl)amino}methyl)-5-[(hydroxysulfamoyl)amino]naphthalen-1-yl]amino}sulfinic acid. Moreover, further by molecular docking approach the binding between enzyme and designed analogues was further analysed. The present preliminary report suggested a considerably good docking interaction score of −338.75 kcal/mol between terbinafine and squalene epoxidase from Trichophyton rubrum. This preliminary study implies that few designed candidate ligands can be effectual towards the activity of this enzyme and can play crucial role in pathogenesis control of T. rubrum.  相似文献   

20.
The reaction pathway from squalene to trans-geranylacetone in Arthrobacter sp. strain Y-11 was studied. The enzyme or enzymes catalyzing squalene degradation were found to be membrane bound. Stoichiometric analysis of a cell-free system revealed that the ratio of squalene to trans-geranylacetone changed from 1:2 to 1:1 as the reaction proceeded, indicating two steps in geranylacetone formation. The initial step was found to be oxygenase catalyzed, from the absolute requirement for molecular oxygen in geranylacetone formation and the incorporation of 18O into geranylacetone under 18O2 atmosphere. By using [3H]squalene as the substrate, we detected an intermediate in the pathway and identified it as 5,9,13-trimethyltetradeca-4,8,12-trienoic acid by mass spectrometry, infrared spectrometry, nuclear magnetic resonance spectrometry, and chemical synthesis. We deduced that squalene was first oxidatively cleaved to geranylacetone and the intermediate, and that the intermediate was further metabolized to geranylacetone. We also synthesized some of the presumptive metabolites, such as 4,8,12-trimethyltrideca-4,8,12-trien-2-one, and confirmed that they served as active precursors for geranylacetone formation. Based on these lines of evidence, we present here the pathway from squalene to trans-geranylacetone in Arthrobacter sp. strain Y-11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号