首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI‐MSI) has become attractive due to its simplicity and high selectivity compared to traditional histochemical techniques.

Objectives

To apply DESI‐MSI to visualise the alkaloid distribution on the leaf surface of Psychotria prunifolia and Palicourea coriacea and to compare the distributions with HPLC–MS and histochemical analyses.

Methodology

Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI‐MSI via tissue imprints on a porous Teflon surface. Relative quantitation of the four alkaloids was obtained by HPLC–MS/MS analysis performed using multiple‐reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer.

Results

Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10‐hydroxyisodeppeaninol was concentrated close to the petiole; a uniform distribution of 10‐hydroxyantirhine was observed in the whole leaf of Psychotria prunifolia. The imprinted image from the Palicourea coriacea leaf also showed a homogeneous distribution of calycanthine throughout the leaf surface.

Conclusion

Different distributions were found for three alkaloids in Psychotria prunifolia, and the distributions found by MSI were in complete accordance with HPLC–MS analysis and histochemical results. The DESI‐MSI technique was therefore demonstrated to provide reliable information about the spatial distribution of metabolites in plants. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Many grasses live in association with asymptomatic fungi (Neotyphodium spp. endophytes), which grow in the intercellular spaces of the grass. These endophytes produce a range of alkaloids that protect the grass against grazing by mammals and insects. One of these alkaloids is an unusual pyrrolopyrazine, peramine. Peramine appears to be continuously produced by the endophyte, but does not progressively accumulate. No mechanism for the removal of peramine by its further metabolism or any other process has been reported. Our aim was to detect peramine or peramine metabolites in plant fluids to determine if peramine is mobilized, metabolized or excreted by the plant. We also wanted to determine if other fungal metabolites are mobilized by the plant, as has been proposed for the loline alkaloids.We developed a highly sensitive method for the analysis of peramine, using a linear ion trap mass spectrometer. We studied the fragmentation pathway of peramine using ESI MSn and ESI FTICRMS. Based on these results we developed a single reaction monitoring method using the fragmentation of the guanidinium moiety. Cut leaf fluid and guttation fluid of different grass endophyte associations (Lolium perenne with Neotyphodium lolii, Festuca arundinacea with Neotyphodium coenophialum, and Elymus sp. with Epichloë sp.) were analysed. Peramine was detected in the cut leaf fluid of all grass-endophyte associations, but not in the guttation fluid of all associations. In some associations we also detected lolines and ergot peptide alkaloids. This is the first report showing the mobilization of fungal alkaloids into plant fluids by the host plant in grass-endophyte associations.  相似文献   

3.
This study was performed in the aim to evaluate nine different extracts from Tunisian Lycium arabicum for their total phenolic and total flavonoid contents, phytochemical analyses as well as their antioxidant and anti‐lipase activities. The in vitro antioxidant property was investigated using three complementary methods (DPPH, ferric reducing antioxidant power (FRAP), and β‐carotene‐linoleic acid bleaching assays) while anti‐lipase activity was evaluated using 4‐methylumbelliferyl oleate method. From all of the tested extracts the most potent found to be the polar MeOH extracts especially those of stems and leaves. In order to investigate the chemical composition of these extracts and possible correlation of their constituents with the observed activities, an UHPLC/HR‐ESI‐MS/MS analysis was performed. Several compounds belonging to different chemical classes were tentatively identified such as rutin and kampferol rutinoside, the major constituents of the leaves, and N‐caffeoyltyramine, lyciumide A, N‐dihydrocaffeoyltyramine as well as fatty acids: trihydroxyoctadecadienoic acid and hydroxyoctadecadienoic acid isomers were detected abundantly in the stems. These results showed that the MeOH extracts of stems and leaves of Larabicum can be considered as a potential source of biological active compounds.  相似文献   

4.
The investigation of the alkaloid extracts of the hemiparasitic plant Osyris alba, collected from three different localities in southern France, revealed the concomitant presence of both pyrrolizidine (PA) and quinolizidine (QA) alkaloids in the samples from two of these localities. The sample from the third locality contained only PAs. The eight QAs identified were sparteine, N-methylcytisine, cytisine, methyl-12-cytisine acetate, hydroxy-N-methylcytisine, N-acetylcytisine, lupanine, and anagyrine. Of the eleven detected PAs, eight were identified as chysin A, chysin B, 1-carboxypyrrolizidine-7-olide, senecionine, integerrimine, retrorsine, senecivernine and a new alkaloid janfestine (7R-hydroxychysin A or 1R-carbomethoxy-7R-hydroxypyrrolizidine). PAs were mainly present as their N-oxides This is, to our knowledge, the first report demonstrating the simultaneous presence of two classes of alkaloids, quinolizidine and pyrrolizidine alkaloids, in a single parasitic plant. As these alkaloids do not occur in the same host plant, the results indicate that Osyris must have tapped more than one host plant concomitantly. Since both quinolizidine and pyrrolizidine alkaloids serve as defence compounds against herbivores, affecting different molecular targets, the simultaneous acquisition of the two types of alkaloids by a single plant could provide a novel mode of defence of hemiparasites against herbivores.  相似文献   

5.
We aimed to develop a standardized methodology to determine the metabolic profile of organic extracts from Malvaviscus arboreus Cav. (Malvaceae), a Mexican plant used in traditional medicine for the treatment of hypertension and other illnesses. Also, we determined the vasorelaxant activity of these extracts by ex vivo rat thoracic aorta assay. Organic extracts of stems and leaves were prepared by a comprehensive maceration process. The vasorelaxant activity was determined by measuring the relaxant capability of the extract to decrease a contraction induced by noradrenaline (0.1 μM). The hexane extract induced a significant vasorelaxant effect in a concentration- and endothelium-dependent manner. Secondary metabolites, such as polyunsaturated fatty acids, terpenes and one flavonoid, were annotated by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) in positive ion mode. This exploratory study allowed us to identify bioactive secondary metabolites from Malvaviscus arboreus, as well as identify potentially-new vasorelaxant molecules and scaffolds for drug discovery.  相似文献   

6.
The identification of large series of metabolites detectable by mass spectrometry (MS) in crude extracts is a challenging task. In order to test and apply the so-called multistage mass spectrometry (MS n ) spectral tree approach as tool in metabolite identification in complex sample extracts, we firstly performed liquid chromatography (LC) with online electrospray ionization (ESI)?CMS n , using crude extracts from both tomato fruit and Arabidopsis leaf. Secondly, the extracts were automatically fractionated by a NanoMate LC-fraction collector/injection robot (Advion) and selected LC-fractions were subsequently analyzed using nanospray-direct infusion to generate offline in-depth MS n spectral trees at high mass resolution. Characterization and subsequent annotation of metabolites was achieved by detailed analysis of the MS n spectral trees, thereby focusing on two major plant secondary metabolite classes: phenolics and glucosinolates. Following this approach, we were able to discriminate all selected flavonoid glycosides, based on their unique MS n fragmentation patterns in either negative or positive ionization mode. As a proof of principle, we report here 127 annotated metabolites in the tomato and Arabidopsis extracts, including 21 novel metabolites. Our results indicate that online LC?CMS n fragmentation in combination with databases of in-depth spectral trees generated offline can provide a fast and reliable characterization and annotation of metabolites present in complex crude extracts such as those from plants.  相似文献   

7.
Plant extracts, made by grinding 2 g of fresh tissue in 5 ml of water, were toxic to Tylenchorhynchus dubius and Hoplolaimus spp. Such extracts from leaves and stems of bean (Phaseolus vulgaris L.) and leaves of tobacco (Nicotiana tabacum L.) were most toxic; those from leaves of corn (Zea mays L.), tomato (Lycopersicon esculentum Mill.) and rhododendron (Rhododendron catawbiense L.) were less toxic; and extracts of bean roots were nontoxic. Nematode movement slowed markedly within 1 hr in tobacco leaf extract, and within 4 hr in bean leaf extract; both extracts completely inactivated or killed 95% of the nematodes in 24 hr. Heating leaf extract 10 min at 80 C eliminated toxicity. Absorption of fusicoccin, a phytotoxin produced by Fusicoccum amygdali Del., increased the toxicity of tomato leaf extracts, whereas water extracts of acetone-extracted powder preparations of leaves were about 15-fold more toxic than water extracts of fresh tissue. Addition of homogenized leaves of bean, tobacco and tomato to soil significantly reduced nematode populations within 3 days.  相似文献   

8.
Ephedra sinica Stapf (Ephedraceae) is a widely used Chinese medicinal plant (Chinese name: Ma Huang). The main active constituents of E. sinica are the unique and taxonomically restricted adrenergic agonists phenylpropylamino alkaloids, also known as ephedrine alkaloids: (1R,2S)-norephedrine (1S,2S)-norpseudoephedrine, (1R,2S)-ephedrine, (1S,2S)-pseudoephedrine, (1R,2S)-N-methylephedrine and (1S,2S)-N-methylpseudoephedrine. GC–MS analysis of freshly picked young E. sinica stems enabled the detection of 1-phenylpropane-1,2-dione and (S)-cathinone, the first two putative committed biosynthetic precursors to the ephedrine alkaloids. These metabolites are only present in young E. sinica stems and not in mature stems or roots. The related Ephedra foemina and Ephedra foliata also lack ephedrine alkaloids and their metabolic precursors in their aerial parts. A marked diversity in the ephedrine alkaloids content and stereochemical composition in 16 different E. sinica accessions growing under the same environmental conditions was revealed, indicating genetic control of these traits. The accessions can be classified into two groups according to the stereochemistry of the products accumulated: a group that displayed only 1R stereoisomers, and a group that displayed both 1S and 1R stereoisomers. (S)-cathinone reductase activities were detected in E. sinica stems capable of reducing (S)-cathinone to (1R,2S)-norephedrine and (1S,2S)-norpseudoephedrine in the presence of NADH. The proportion of the diastereoisomers formed varied according to the accession tested. A (1R,2S)-norephedrine N-methyltransferase capable of converting (1R,2S)-norephedrine to (1R,2S)-ephedrine in the presence of S-adenosylmethionine (SAM) was also detected in E. sinica stems. Our studies further support the notion that 1-phenylpropane-1,2-dione and (S)-cathinone are biosynthetic precursors of the ephedrine alkaloids in E. sinica stems and that the activity of (S)-cathinone reductases directs and determines the stereochemical branching of the pathway. Further methylations are likely due to N-methyltransferase activities.  相似文献   

9.
《农业工程》2020,40(3):214-220
The aim of the present study is to assess the antimicrobial activities of various leaf extracts of Ocimum americanum were tested against pathogenic microorganisms. Preparation of different extracts viz., aqueous, acetone, ethyl acetate and methanol through soxhlet extraction method. Various extracts were investigated against MTCC strains of Bacillus cereus, Clostridium penfrigens, Klebsilla pnemoniae, Salmonella paratyphi, Candida albicans and Aspergillus niger by agar well diffusion and disc diffusion methods. Minimum inhibitory concentration (MIC), Minimum Bactericidal/Fungicindal Concentration (MBC/MFC) were determined through micro dilution method. Elucidation of phytochemicals and functional groups were observed by HPLC and FT-IR respectively. Ethyl acetate leaf extract of O.americanum showed significant antimicrobial activity against the all tested pathogens in agar well diffusion method in which B.cereus (17 mm) was observed high zone of inhibition. Whereas lowest inhibition was observed in aqueous extract against C.pentrigens (7 mm). The ranges of MIC values from 0.78 μg/ml to 50 μg/ml and MBC/MFC 1.56 μg/ml to 50 μg/ml were observed. Phytochemicals such as alkaloids, steroids, saponins, flavonoids, tannins, terepenes, phenolic compounds cardiac glycosides were detected. Saponinns, flavonoids, tannins, phenolic compounds were observed in only ethyl acetate leaf extracts. Functional group of the leaf extracts was exhibited by FTIR and HPLC analysis of the ethyl acetate leaf extract was elutated at six peaks. Based on the results we concluded that ethyl acetate leaf extract of O.americanum has proved to be potentially effective than the other extracts. Therefore, ethyl acetate leaf extract of O.americanum could act as antimicrobial agent and further studies are recommended for isolation of compounds and toxicological studies.  相似文献   

10.
Geographically distinct populations of Paterson’s curse (Echium plantagineum L., Boragineacea), found near roadsides across New South Wales and Victoria, Australia were surveyed along 3 distinct longitudinal transects in spring of 2011 for presence of pyrrolizidine alkaloids and naphthoquinones in sampled plants. Composite samples of shoots and roots were collected from each of 45 sites; shoot extracts were subjected to solid phase extraction and LC-ESI/MS for determination of pyrrolizidine alkaloids (PAs) and related N-oxides (PANOs), while root periderm extracts were analysed for naphthoquinone content spectrophotometrically and by LC-ESI/MS. Metabolic profiling of 12 possible PAs and PANOs showed their consistent appearance in all shoot extracts, with lepthamine N-oxide, echimidine-N oxide and echumine N-oxide predominant. The three major PANOs were significantly higher in northern sampling locations than those further south. Root extracts contained shikonin and several related naphthoquinones, as well as two of the major PANOs found in the leaves. Naphthoquinones were highest in the northwest corner of the sampled region. The patterns of abundance of secondary metabolites in E. plantagienum suggest that climate change might result in greater production of defensive compounds by E. plantagineum, making this weed increasingly toxic to livestock.  相似文献   

11.
12.
A radioimmunoassay for the determination of pmol amounts of the tropane alkaloid scopolamine has been developed. The assay uses tritiated [N-C3H3]scopolamine of high specific activity (0.67 Ci/mmol) as tracer. The measuring range of the assay extends from 0.5 to 50 ng of scopolamine, and as little as 200 pg may be detected. The antiserum raised against a conjugate of scopolamine-N-β-propionic acid-human serum albumin is highly specific, and neither hyoscyamine, 6-hydroxyhyoscyamine, scopine, tropic acid nor other related alkaloids interfere in the scopolamine determination in crude plant extracts. This assay allows for the first time the rapid, sensitive and precise (CV = 2.5 %) determination of this alkaloid in unpurified extracts of scopolamine-containing plants. The distribution of scopolamine in Datura plants, as well as its diurnal changes in leaf concentrations, has been investigated in detail and a preliminary survey on the variability of scopolamine leaf concentrations in a population of Datura sanguinea plants is given.  相似文献   

13.
Ku WF  Tan SJ  Low YY  Komiyama K  Kam TS 《Phytochemistry》2011,72(17):2212-2218
A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.  相似文献   

14.
The alkaloids of Strychnos icaja (Loganiaceae) have been studied. An extract from Zaire leaf material yielded nine alkaloids, comprising novacine, the new base 21,22-α-epoxy-4,14-dihydroxy-3-methoxy-N-methyl-sec.-pseudostrychnine, and seven others of known structure previously obtained from the plant. Cameroun leaf material gave five alkaloids, of which one, 21,22-α-epoxy-3,4-dimethoxy-N-methyl-sec.-pseudostrychnine, is new. Fruits from Gabon afforded eight alkaloids; two of them are new and are formulated as 21,22-α-epoxy-4-methoxy-N-methyl-sec.-pseudostrychnine and the corresponding 14-hydroxy derivative.  相似文献   

15.
The existing therapeutic agents for the management of pain and pyrexia are not very efficient and accompanied by numerous side effects. Thus, new effective agents are the most needed. The present study investigates bioactivities and phytochemical screening of different parts of Cissus assamica (Vitaceae), a Bangladeshi tribal medicinal plant. Three plant parts stems, leaves and roots were collected, washed, dried, powdered and then prepared for cold extraction. The methanolic stems and leaves extracts were fractioned with four and two solvents respectively. Different plant extracts were then investigated for in vivo antinociceptive activity and only methanolic leaves extract was investigated for in vivo antipyretic activity. In Swiss-albino mice, 200 and 400 mg/kg body weight doses were used for all extracts. In the peripheral antinociceptive activity, the methanolic stem extract and its dichloromethane, chloroform, pet ether fractions and methanolic roots extract at their both doses showed significant antinociceptive responses when compared to standard diclofenac sodium (60.49% inhibition). In the central antinociceptive activity, the response was found significant for methanolic stem and methanolic roots extract in their both doses compared to standard morphine. In antipyretic activity, methanolic leaves extract significantly reduced pyrexia level at 400 and 200 mg/kg body weight doses after two, three and 4 h of administration when compared to standard. So our findings indicate that this plant possesses noteworthy pharmacological activities which may be a basis for further researches to establish a possible mode of action of its different parts.  相似文献   

16.
Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.  相似文献   

17.
Diabetes is a worldwide public health disease. Currently, the most effective way to treat diabetes is to mitigate postprandial hyperglycemia by inhibiting carbohydrate hydrolysis enzymes in the digestive system. Plant extracts are rich in bioactive compounds, which can be used in diabetes treatment. This study aims to evaluate the polyphenols content in ethanolic extracts of avocado fruit and leaves (Persea americana Mill.). Additionally, their antioxidant activity using DPPH, while the inhibition ability of α-amylase was examined by reacting different amounts of the extracts with α-amylase compared to acarbose as standard inhibitor. The active compounds were detected in the extracts by LC/MS. The obtained results showed that the leaf extract recorded a significant content of total phenolic compounds compared to the fruit extract (178.95 and 145.7 mg GAE /g dry weight, respectively). The total flavonoid values ??ranged from 32.5 to 70.08 mg QE/g dry weight of fruit and leaves extracts, respectively. Twenty-six phytogenic compounds were detected in leaf and fruit extract by LC/MS. These compounds belong to fatty acids, sterols, triterpenes, phenolic acids, and flavonoids. The antioxidant activity of the extracts is due to the exist of phytogenic compounds, i.e., polyphenols and flavonoids. The antioxidant activity increased in a concentration dependant manner. Avocado fruit extract (1000 µg/mL) scavenged 95% of DPP? while leaf extract rummaged 91.03% of free radicals compared with Vit C and BHT. Additionally, higher α-amylase inhibitory activity was observed in fruit extract than the leaf extract, where the fruit and leaf extract (1000 μg/ml) inhibited the enzyme by 92.13% and 88.95%, respectively. The obtained results showed that the ethanolic extracts of avocado could have a significant impact on human health due to their high content of polyphenols.  相似文献   

18.
《Phytochemistry》1987,26(7):2136-2137
From the stems of Abuta pahni, eight isoquinoline alkaloids were isolated and identified by spectroscopic methods and chemical correlations. Three of the bis-benzylisoquinoline alkaloids are new and were assigned the structures 2′-N-nordaurisoline, 2-N-methyllindoldhamine and 2′-N-methyllindoldhamine. The other known alkaloids were coclaurine, daurisoline, lindoldhamine, dimethyllindoldhamine, stepharine and thalifoline.  相似文献   

19.
Because fluoroquinolone antimicrobial agents may be released into the environment, the potential for environmental bacteria to biotransform these drugs was investigated. Eight Mycobacterium sp. cultures in a sorbitol-yeast extract medium were dosed with 100 μg ml−1 of norfloxacin and incubated for 7 days. The MICs of norfloxacin for these strains, tested by an agar dilution method, were 1.6 to 25 μg ml−1. Cultures were extracted with ethyl acetate, and potential metabolites in the extracts were purified by high-performance liquid chromatography. The metabolites were identified using mass spectrometry and nuclear magnetic resonance spectroscopy. N-Acetylnorfloxacin (5 to 50% of the total absorbance at 280 nm) was produced by the eight Mycobacterium strains. N-Nitrosonorfloxacin (5 to 30% of the total absorbance) was also produced by Mycobacterium sp. strain PYR100 and Mycobacterium gilvum PYR-GCK. The MICs of N-nitrosonorfloxacin and N-acetylnorfloxacin were 2- to 38- and 4- to 1,000-fold higher, respectively, than those of norfloxacin for several different bacteria, including the two strains that produced both metabolites. Although N-nitrosonorfloxacin had less antibacterial activity, nitrosamines are potentially carcinogenic. The biotransformation of fluoroquinolones by mycobacteria may serve as a resistance mechanism.  相似文献   

20.
为提高黑老虎(Kadsura coccinea)资源的综合利用率,采用广泛靶向代谢组学技术鉴定并分析了根、茎、叶代谢组分差异及高度富集成分。结果表明,在根、茎和叶中分别鉴定出642、650和619个代谢物,以酚酸、脂质、类黄酮和有机酸为主;叶与根、茎与根的共有成分分别为566和650个,显著差异成分有442和393个,主要为酚酸、类黄酮和脂质,差异代谢物在苯丙烷生物合成、黄酮与黄酮醇生物合成通路中显著富集。代谢物总丰度和次生代谢物丰度均表现为叶>根>茎,叶中酚酸、类黄酮和脂质及茎中酚酸积累量显著高于根,而氨基酸及其衍生物、萜类、木脂素、香豆素、生物碱的丰度在根中显著上调。因此,黑老虎根、茎、叶有大量共有成分,叶和茎中酚酸、叶中类黄酮和脂质高度富集,含有新绿原酸、绿原酸、槲皮素等多个丰度较高且具有重要生物活性化合物,具有较高利用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号