首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian phospholipase D structure and regulation.   总被引:18,自引:0,他引:18  
The recent identification of cDNA clones for phospholipase D1 and 2 has opened the door to new studies on its structure and regulation. PLD activity is encoded by at least two different genes that contain catalytic domains that relate their mechanism of action to phosphodiesterases. In vivo roles for PLD suggest that it may be important for multiple specialized steps in receptor dependent and constitutive processes of secretion, endocytosis, and membrane biogenesis.  相似文献   

2.
Mammalian phosphoinositide-specific phospholipases C (PI-PLCs) are involved in most receptor-mediated signal transduction pathways. The mammalian isozymes employ a modular arrangement of domains to achieve a regulated production of two key second messengers. The roles of the PH, EF hand, C2, SH2 and SH3 modules in regulation of these enzymes and in interactions with membranes and other proteins is becoming apparent from recent structural and functional studies.  相似文献   

3.
Many critical cellular processes, including proliferation, vesicle trafficking, and secretion, are regulated by both phospholipase D (PLD) and the actin microfilament system. Stimulation of human PLD1 results in its association with the detergent-insoluble actin cytoskeleton, but the molecular mechanisms and functional consequences of PLD-actin interactions remain incompletely defined. Biochemical and pharmacologic modulation of actin polymerization resulted in complex bidirectional effects on PLD activity, both in vitro and in vivo. Highly purified G-actin inhibited basal and stimulated PLD activity, whereas F-actin produced the opposite effects. Actin-induced modulation of PLD activity was independent of the activating stimulus. The efficacy and potency of the effects of actin were isoform-specific but broadly conserved among actin family members. Human betagamma-actin was only 45% as potent and 40% as efficacious as rabbit skeletal muscle alpha-actin, whereas its inhibitory profile was similar to the single actin species from the yeast, Saccharomyces cerevisiae. Use of actin polymerization-specific reagents indicated that PLD1 binds both monomeric G-actin, as well as actin filaments. These data are consistent with a model in which the physical state of the actin cytoskeleton is a critical determinant of its regulation of PLD activity.  相似文献   

4.
5.
Mammalian phosphoinositide-specific phospholipase C isoenzymes   总被引:4,自引:0,他引:4  
Procaryotic and eucaryotic cells have evolved multiple pathways for communication with their external environment. The inositol 1,4,5-trisphosphate/diacylglycerol second messenger system is an example of such a signal transduction pathway which is present in multicellular eucaryotic organisms. Binding of an agonist to a specific cell surface receptor promotes rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate. The pivotal enzyme for this second messenger system is phosphoinositide-specific phospholipase C which hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate the two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. Recently, much progress has been made in the purification, characterization and cDNA cloning of multiple PI-PLC isoenzymes. The results of the recent studies on phosphoinositide-specific phospholipase C are reviewed.  相似文献   

6.
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC.  相似文献   

7.
8.
9.
In the vertebrate retina, the formation of neural circuits within discrete laminae is critical for the establishment of retinal visual function. Precise formation of retinal circuits requires the coordinated actions of adhesive and repulsive molecules, including repulsive transmembrane semaphorins (Sema6A, Sema5A, and Sema5B). These semaphorins signal through different Plexin A (PlexA) receptors, thereby regulating distinct aspects of retinal circuit assembly. Here, we investigate the physiological roles of three Class 6 transmembrane semaphorins (Sema6B, Sema6C, and Sema6D), previously identified as PlexA receptor ligands in non-retinal tissues, in mammalian retinal development. We performed expression analysis and also phenotypic analyses of mice that carry null mutations in each of genes encoding these proteins using a broad range of inner and outer retinal markers. We find that these Class 6 semaphorins are uniquely expressed throughout postnatal retinal development in specific domains and cell types of the developing retina. However, we do not observe defects in stereotypical lamina-specific neurite stratification of retinal neuron subtypes in Sema6B−/− or Sema6C−/−; Sema6D−/− retinas. These findings indicate these Class 6 transmembrane semaphorins are unlikely to serve as major PlexA receptor ligands for the assembly of murine retinal circuit laminar organization.  相似文献   

10.
Z Qian  L R Drewes 《FASEB journal》1991,5(3):315-319
Because receptors, G proteins, and phospholipases all exist within a membrane lipid environment, it is not unreasonable to assume that an enzyme capable of changing the lipid environment can affect the coupling relationship among these signal transducing components. Our previous study showed that a muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D via a G protein in brain. We demonstrate here that phosphatidylinositol phospholipase C and phosphatidylcholine phospholipase D are simultaneously activated within 15 s by muscarine in the presence of 1 microM GTP gamma S. More important, inhibition of phospholipase D by zinc attenuated carbamylcholine-induced activation of phospholipase C by 30%. Our additional evidence strongly indicates that the receptor-regulated phospholipase D plays an important modulatory role in agonist-stimulated phosphatidylinositol breakdown. This modulatory effect may be achieved by changing the membrane microenvironment in which phospholipase C and phosphoinositol lipids reside, consequently amplifying the inositol phospholipid signaling process. Our results lead us to postulate that the potential interaction between two different signaling pathways may provide a cell with intracellular coordination and enable the cell to achieve functional responses.  相似文献   

11.
"Slip, sliding away": phospholipase D and the Golgi apparatus   总被引:6,自引:0,他引:6  
Phospholipase D enzymes (PLDs) constitute a family of phosphodiesterases that catalyze the hydrolysis of phosphatidylcholine (PtdCho) to generate choline and phosphatidic acid (PtdOH), a potent lipid signaling molecule implicated in numerous physiological processes. Mammalian PLDs have been localized to multiple organelles, including the nucleus, Golgi apparatus, lysosomes, secretory granules and plasma membrane. However, the detailed mechanisms that govern targeting of PLDs to different organelles, how their local activity is controlled or indeed the nature of PA effectors are not well understood. Here, we discuss recent observations on PLD localization to the Golgi apparatus and how members of this enzyme family might play a role in regulating the structure of this organelle.  相似文献   

12.
13.
Regulation of phospholipase D   总被引:11,自引:0,他引:11  
Exton JH 《FEBS letters》2002,531(1):58-61
Structural studies of plant and bacterial members of the phospholipase D (PLD) superfamily are providing information about the role of the conserved HKD domains in the structure of the catalytic center and the catalytic mechanism of mammalian PLD isozymes (PLD1 and PLD2). Mutagenesis and sequence comparison studies have also defined the presence of pleckstrin homology and phox homology domains in the N-terminus and have demonstrated that a conserved sequence at the C-terminus is required for catalysis. The N- and C-terminal regions of PLD1 also contain interaction sites for protein kinase C, which can directly activate the enzyme through a non-phosphorylating mechanism. Small G proteins of the Rho and ADP-ribosylation factor families also directly regulate the enzyme, with RhoA binding to a sequence in the C-terminus. Certain tyrosine kinases and members of the Ras subfamily of small G proteins can activate the enzyme, but the mechanisms appear to be indirect. The mechanisms by which agonists activate PLD in vivo probably involve multiple pathways.  相似文献   

14.
Transphosphatidylation by phospholipase D   总被引:43,自引:0,他引:43  
  相似文献   

15.
Conditions of phospholipase D adsorption on silica gels have been studied. The immobilized phospholipase D is shown to differ from the soluble form in thermostability, pH optima and activation conditions. A question is discussed as to the connection of the use of activators and the adsorption immobilization. It is assumed that phospholipase D belongs to enzymes, functioning only in the immobilized state.  相似文献   

16.
Phospholipase D (PLD) is a widely distributed enzyme that is under elaborate control by hormones, neurotransmitters, growth factors and cytokines in mammalian cells. Protein kinase C (PKC) plays a major role in the regulation of the PLD1 isozyme through interaction with its N-terminus. PKC activates this isozyme by a non-phosphorylation mechanism in vitro, but phosphorylation plays a role in the action of PKC on the enzyme in vivo. Although PLD1 can be phosphorylated by PKC in vitro, it is unclear that this occurs in vivo. Small GTPases of the ADP-ribosylation factor (ARF) and Rho families directly activate PLD1 in vitro and there is evidence that Rho proteins are involved in agonist regulation of PLD1 in vivo. ARF proteins stimulate PLD activity in the Golgi apparatus, but the role of these proteins in agonist regulation of the enzyme is less clear. PLD1 undergoes tyrosine phosphorylation in response to H2O2 treatment of cells. The functional consequence of this phosphorylation and soluble tyrosine kinase(s) involved are presently unknown.  相似文献   

17.
ADAMs是近几年发现的一类具有多个结构区和广泛生物学功能的糖蛋白,它们在哺乳动物受精中的作用日益得到实验结果的支持,本文简要总结了近几年ADAMs在哺乳动物受精中作用的研究进展。  相似文献   

18.
ADAMs是近几年发现的一类具有多个结构区和广泛生物学功能的糖蛋白,它们在哺乳动物受精中的作用日益得到实验结果的支持,本文简要总结了近几年ADAMs在哺乳动物受精中作用的研究进展。  相似文献   

19.
20.
There is increased interest in physiological functions and mechanisms of action of sphingolipids metabolites, ceramide, sphingosine, and sphingosine-l-phosphate (SPP), members of a new class of lipid second messengers. This review summarizes current knowledge regarding the role of these sphingolipids metabolites in the actions of growth factors and focuses on the second messenger roles of sphingosine and its metabolite, SPP, in the regulation of cell growth. We also discuss possible interactions with intermediates of the well known glycerophospholipid cycle. Sphingosine and SPP generally provide positive mitogenic signals whereas ceramide has been reported to induce apoptosis and cell arrest in several mammalian cell lines. Stimulation of phospholipase D leading to an increase in phosphatidic acid, a positive regulator of cell growth, by sphingosine and SPP, and its inhibition by ceramide, might be related to their opposite effects on cell growth. This also indicates that sphingolipid turnover could regulate the diacylglycerol cycle. Cross-talk between sphingolipid turnover pathways and the diacylglycerol cycle increases complexity of signaling pathways leading to cellular proliferation and adds additional sites of regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号