首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.  相似文献   

2.
The contribution of three single nucleotide polymorphisms (SNPs) that substitute amino acids in the X-ray repair cross-complementing gene 1 (XRCC1) protein, Arg194Trp (R194W), Arg280His (R280H), and Arg399Gln (R399Q), to the risk of various types of cancers has been extensively investigated by epidemiological researches. To investigate whether two of these polymorphisms directly influence their repair ability, we established Chinese hamster ovary (CHO) EM9 cell lines transfected with XRCC1(WT), XRCC1(R194W), or XRCC1(R280H) genes and analyzed the DNA repair ability of these cells. The EM9 cells that lack functional XRCC1 proteins exhibit severe sensitivity to methyl methanesulfonate (MMS). Introduction of the human XRCC1(WT) and XRCC1(R194W) gene to EM9 cells restored the MMS sensitivity to the same level as the AA8 cells, a parental cell line. However, introduction of the XRCC1(R280H) gene partially restored the MMS sensitivity, resulting in a 1.7- to 1.9-fold higher sensitivity to MMS compared with XRCC1(WT) and XRCC1(R194W) cells at the LD(50) value. The alkaline comet assay determined diminished base excision repair/single strand break repair (BER/SSBR) efficiency in XRCC1(R280H) cells as observed in EM9 cells. In addition, the amount of intracellular NAD(P)H decreased in XRCC1(R280H) cells after MMS treatment. Indirect immunofluorescence staining of the XRCC1 protein showed an intense increase in the signals and clear foci of XRCC1 in the nuclei of the XRCC1(WT) cells, but a faint increase in the XRCC1(R280H) cells, after MMS exposure. These results suggest that the XRCC1(R280H) variant protein is defective in its efficient localization to a damaged site in the chromosome, thereby reducing the cellular BER/SSBR efficiency.  相似文献   

3.
4.
Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells from three different patients (t1/2 approximately 4h). In both cell types, glutathione depletion (increased oxidative stress) caused a pronounced repair retardation even under non-toxic irradiation conditions. Furthermore, the cleavage activity at 8-oxoG residues measured in protein extracts of the cells dropped transiently after irradiation. An addition of dithiothreitol restored normal repair rates. Interestingly, the repair rates of cyclobutane pyrimidine dimers (t1/2 approximately 18 h), AP sites (t1/2 approximately 1h) and single-strand breaks (t1/2 <30 min) were not affected by the light-induced oxidative stress. We conclude that the base excision repair of oxidative purine modifications is surprisingly vulnerable to oxidative stress, while the nucleotide excision repair of pyrimidine dimers is not.  相似文献   

5.
The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.  相似文献   

6.
Combining natural products with chemotherapy and/or radiotherapy may increase the efficacy of cancer treatment. It has been hypothesized that natural products may inhibit DNA repair and sensitize cancer cells to DNA damage-based cancer therapy. However, the molecular mechanisms underlying these activities remain unclear. In this study, we found that diallyl disulfide (DADS), an organosulfur compound, increased the sensitivity of yeast cells to DNA damage and has potential for development as an adjuvant drug for DNA damage-based cancer therapy. We induced HO endonuclease to generate a specific DNA double-strand break (DSB) by adding galactose to yeast and used this system to study how DADS affects DNA repair. In this study, we found that DADS inhibited DNA repair in single-strand annealing (SSA) system and sensitized SSA cells to a single DSB. DADS impaired DNA repair by inhibiting the protein levels of the DNA resection-related proteins Sae2 and Exo1. We also found that the recruitment of MRX and the Mec1-Ddc2 complex to a DSB was prevented by DADS. This result suggests that DADS counteracts G2/M DNA damage checkpoint activation in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Only by elucidating the molecular mechanisms by which DADS influences DNA repair will we be able to discover new adjuvant drugs to improve chemotherapy and/or radiotherapy.  相似文献   

7.
Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.  相似文献   

8.
Using two-dimensional thin-layer chromatography, the effect of serotonin on the yield of thymine dimers and on cleavage of the N-glycosidic bond in the DNA irradiated with ultraviolet (UV) light and X-ray was studied. Bound serotonin was shown to reduce the synthesis of UV-induced thymine dimers but had no effect on the number of X-ray-induced breaks in the N-glycoside bonds in thymidine residues. The data obtained are discussed in terms of the mechanisms of serotonin involvement in the photoprotection of yeast cells from the lethal action of UV and X-ray irradiations.  相似文献   

9.
Nickel, a human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity, and sister-chromatid exchanges (SCE) induced by ultraviolet (UV) light but not by methyl methanesulfonate (MMS). To verify that the cocytotoxicity and cogenotoxicity of nickel are correlated with its inhibition on DNA repair, the effects of nickel on the DNA repair induced by UV and by MMS have been investigated. Our analyses of DNA repair of single-strand breaks by alkaline elution and alkaline sucrose sedimentation indicate that nickel inhibited the DNA repair in UV-treated, but not in MMS-treated cells. Therefore, the inhibition of DNA repair seems to play an important role in the cocytotoxicity and comutagenicity of nickel. However, the inhibition of DNA repair seems not to play a decisive role in enhancing SCE, because we have previously shown that arsenite inhibits the UV-induced DNA repair, but has no enhancing effect on the UV-induced SCE. Our results also show that nickel had obvious inhibitory effects on DNA ligation and postreplication repair, but had no apparent effect on nucleotide excision and DNA polymerization in the UV repair. The results of the DNA ligation inhibition by nickel in UV but not in MMS repair suggest that different ligases are used in the DNA repair of UV- and MMS-induced damages.  相似文献   

10.
11.
Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.  相似文献   

12.
Thermally denatured DNA of coliphage T1 after treatment with uv-light (2537 A) and 60Co-gamma rays acts as a hapten with antigenic determinant groups specific for radiation-induced alterations of the macromolecule. After conjugation to methylated bovine serum albumin the DNA becomes immunogenic in rabbits. Antibodies against irradiated DNA do not react with unirradiated single-stranded DNA. Antigen-antibody complexes were demonstrated by CsCl-density gradient centrifugation. The decrease in buoyant density of the DNA is proportional to the amount of antibody protein bound to the antigen. By this means photoproducts as well as alterations due to ionizing radiation in DNA were detected independent of the type of antigen-antibody complex, i.e. precipitating or soluble aggregate.  相似文献   

13.
DNA topoisomerases and DNA repair   总被引:5,自引:0,他引:5  
DNA topoisomerases are enzymes that can modify, and may regulate, the topological state of DNA through concerted breaking and rejoining of the DNA strands. They have been believed to be directly involved in DNA excision repair, and perhaps to be required for the control of repair as well. The vicissitudes of this hypothesis provide a noteworthy example of the dangers of interpreting cellular phenomena without genetic information and vice versa.  相似文献   

14.
DNA ligases in the repair and replication of DNA   总被引:1,自引:0,他引:1  
DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA.Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.  相似文献   

15.
Gametogenetin (GGN) binding protein 2 (GGNBP2) is a zinc finger protein expressed abundantly in spermatocytes and spermatids. We previously discovered that Ggnbp2 resection caused metamorphotic defects during spermatid differentiation and resulted in an absence of mature spermatozoa in mice. However, whether GGNBP2 affects meiotic progression of spermatocytes remains to be established. In this study, flow cytometric analyses showed a decrease in haploid, while an increase in tetraploid spermatogenic cells in both 30‐ and 60‐day‐old Ggnbp2 knockout testes. In spread spermatocyte nuclei, Ggnbp2 loss increased DNA double‐strand breaks (DSB), compromised DSB repair and reduced crossovers. Further investigations demonstrated that GGNBP2 co‐immunoprecipitated with a testis‐enriched protein GGN1. Immunofluorescent staining revealed that both GGNBP2 and GGN1 had the same subcellular localizations in spermatocyte, spermatid and spermatozoa. Ggnbp2 loss suppressed Ggn expression and nuclear accumulation. Furthermore, deletion of either Ggnbp2 or Ggn in GC‐2spd cells inhibited their differentiation into haploid cells in vitro. Overexpression of Ggnbp2 in Ggnbp2 null but not in Ggn null GC‐2spd cells partially rescued the defect coinciding with a restoration of Ggn expression. Together, these data suggest that GGNBP2, likely mediated by its interaction with GGN1, plays a role in DSB repair during meiotic progression of spermatocytes.  相似文献   

16.
Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.  相似文献   

17.
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic “active” DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that “pruning” of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.  相似文献   

18.
19.
20.
The relationship between changes in the methylation pattern of functionally different parts of DNA and the chromosomal aberration’s yield was studied under the conditions of UV-C irradiation fractionating. A combination of restriction analysis (HpaII, MspI, and MboI enzymes) with subsequent PCR (internal transcribed spacer ITS1 and ITS4 and inter simple sequence repeat ISSR(14b) primers) was used. The obtained results showed changes in the methylation pattern of the satellite and transcribed DNA part of DNA at irradiation in the fractionating mode, depending on the fraction range. The role of a DNA methylation pattern changes in the development of radiation damage and induction of the organism’ protective reactions was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号