首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4).2H(2)O [D(1)=binucleating ligand with tris(2-pyridylmethyl)amine (TMPA) moieties linked in the 5-pyridyl position by a -CH(2)CH(2)- bridge] mediated efficient oxidative cleavage of pBR322 plasmid DNA under reducing conditions. A mononuclear analogue, [Cu(TMPA)(H(2)O)](ClO(4))(2), was less effective at linearizing supercoiled (Form I) plasmid DNA as compared to the binuclear complex. A new method for quenching the copper-dependent reactions has been developed to avoid plasmid scission by the binuclear complex and the standard gel loading buffer. EDTA was not sufficient for retarding copper reaction, but diethyldithiocarbamic acid was capable of inhibiting all reactivity. Investigation of oxidative cleavage of double-helical oligonucleotides by [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4) confirmed the enhanced reactivity of the binuclear over the mononuclear complex and provided mechanistic insights into the nature of the reaction. Cleavage of DNA required both the binuclear complex and a reductant and likely proceeded through an O(2)-derived intermediate that does not include a diffusible hydroxyl radical. The greater efficiency of the binuclear complex relative to the mononuclear analogue is consistent with their relative abilities to activate dioxygen.  相似文献   

2.
Bacteriophage D3 is capable of lysogenizing Pseudomonas aeruginosa PAO1 (serotype O5), converting the O-antigen from O5 to O16 and O-acetylating the N-acetylfucosamine moiety. To investigate the mechanism of lysogenic conversion, a 3.6 kb fragment from the D3 genome was isolated capable of mediating serotypic conversion identical to the D3 lysogen strain (AK1380). The PAO1 transformants containing this 3.6 kb of D3 DNA exhibited identical lipopolysaccharide (LPS) banding patterns to serotype O16 in silver-stained SDS-PAGE gels and displayed reactivity to an antibody specific for O-acetyl groups. Further analysis led to the identification of three open reading frames (ORFs) required for serotype conversion: an alpha-polymerase inhibitor (iap); an O-acetylase (oac); and a beta-polymerase (wzybeta). The alpha-polymerase inhibitor (Iap) is capable of inhibiting the assembly of the serotype-specific O5 B-band LPS and allows the phage-encoded beta-polymerase (Wzybeta) to form new beta-linked B-band LPS. The D3 phage also alters the LPS by the addition of O-acetyl groups to the FucNAc residue in the O-antigen repeat unit by the action of the D3 O-acetylase (Oac). These three components form a simple yet elegant system by which bacteriophage D3 is capable of altering the surface of P. aeruginosa PAO1.  相似文献   

3.
There is a great deal of evidence to support a pathogenic role of oxidative stress in Alzheimer's disease (AD), but the sources of reactive oxygen species have not been directly demonstrated. In this study, using a novel in situ detection system, we show that neurofibrillary tangles and senile plaques are major sites for catalytic redox reactivity. Pretreatment with deferoxamine or diethylenetriaminepentaacetic acid abolishes the ability of the lesions to catalyze the H2O2-dependent oxidation of 3,3'-diaminobenzidine (DAB), strongly suggesting the involvement of associated transition metal ions. Indeed, following chelated removal of metals, incubation with iron or copper salts reestablished lesion-dependent catalytic redox reactivity. Although DAB oxidation can also detect peroxidase activity, this was inactivated by H2O2 pretreatment before use of DAB, as shown by a specific peroxidase detection method. Model studies confirmed the ability of certain copper and iron coordination complexes to catalyze the H2O2-dependent oxidation of DAB. Also, the microtubule-associated protein tau, as an in vitro model for proteins relevant to AD pathology, was found capable of adventitious binding of copper and iron in a redox-competent manner. Our findings suggest that neurofibrillary tangles and senile plaques contain redox-active transition metals and may thereby exert prooxidant or possibly antioxidant activities, depending on the balance among cellular reductants and oxidants in the local microenvironment.  相似文献   

4.
Metalloenzymes catalyze reactions of molecular oxygen and its reduced forms through the controlled formation of metal-bound, activated oxygen intermediates. These intermediates have been a challenge to characterize and new experimental approaches capable of relating structure to reactivity under physiologically relevant conditions are needed. The application of a competitive isotope fractionation technique has enabled changes in O-O bonding to be probed during enzyme-catalyzed reactions. The derived isotope effects provide insights into the reaction mechanisms of O2 and O2*-, which probably could not have been obtained using more conventional methods.  相似文献   

5.
The mutagenicity of nitroarenes for Salmonella typhimurium strains with adenine-thymine base pairs at the mutational site is dependent upon enzymic reduction of the nitro function. Although the electrophilic metabolites of nitroarenes are capable of mutating adenine-thymine base pairs, they show a marked preference for guanine-cytosine pairs when given a choice. Quantum chemical calculations indicate the reactivity order for nucleophilic sites in an AT run of base pairs to be the N-7 of adenine (N7(A)) first, followed by an approximately equal reactivity for C-8 of adenine (C8(A)) and O4 of thymine (O4(T)). Given the low probability of reaction of electrophilic metabolites of nitroarenes with adenine-thymine base pairs, the mutagenic potency of nitroarenes for strains with adenine-thymine base pairs at the mutational site is remarkable.  相似文献   

6.
H2O2 reacts with cytochrome c peroxidase in a variety of ways. The initial reaction produces cytochrome c peroxidase Compound I. If more than a 10-fold excess of H2O2 is added to the enzyme, a portion of the H2O2 will react with Compound I to produce molecular oxygen. The remainder oxidizes the heme group and various amino acid residues in the protein. If less than a 10-fold excess of H2O2 is added to the enzyme, essentially all the H2O2 is utilized by oxidation of amino acid residues in the protein. The oxidation of the amino acid residues by H2O2 substantially modifies the reactivity of cytochrome c peroxidase. The modification of reactivity could be the direct result of amino acid oxidation or an indirect result caused by a perturbation of the protein structure at the active site. The products oxidized at pH 8 lose their ability to react with H2O2. The products oxidized at pH4 react with H2O2 but their reactivity toward Fe(CN)4-6 is substantially reduced.  相似文献   

7.
The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.  相似文献   

9.
Knapp MJ  Klinman JP 《Biochemistry》2003,42(39):11466-11475
The reactivity of O(2) with soybean lipoxygenase-1 (SLO) has been examined using a range of kinetic probes. We are able to rule out diffusional encounter of O(2) with protein, an outer-sphere electron transfer to O(2), and proton transfer as rate-limiting steps in k(cat)/K(M)(O(2)) for wild-type enzyme (WT SLO); this restricts the rate-limiting step to either the combination of O(2) with L(*) or a subsequent conformational change. In the Ile(553) --> Phe mutant, which constricts the putative O(2) binding channel [Knapp et al. (2001) J. Am. Chem. Soc. 123, 2931-2932], k(cat)/K(M)(O(2)) decreases by over a factor of 20; yet, this mutant appears to have the same rate-limiting step as WT SLO. It is argued that the slow step on k(cat)/K(M)(O(2)) is the combination of O(2) with L(*), with proximal protein effects determining the rate of reaction. The available data for SLO support the view that enzymes can affect O(2) reactivity without a direct involvement of metal cofactors. The primary role of the Fe(3+) cofactor is to generate an enzyme-bound radical, while the protein is concluded to control the stereo- and regiochemistry of O(2) encounter with this radical.  相似文献   

10.
Physical and chemical scavenging of singlet molecular oxygen by tocopherols   总被引:4,自引:0,他引:4  
Singlet molecular oxygen (1O2) arising from the thermal decomposition of the endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate was used to assess the effectiveness of alpha-, beta-, gamma-, and delta-tocopherol in the physical quenching as well as the chemical reaction of 1O2. The relative physical quenching efficiencies of the tocopherol homologs were found to decrease in the order of alpha greater than or equal to beta greater than gamma greater than delta-tocopherol. The ability of physical quenching depends on a free hydroxyl group in position 6 of the chromane ring. Chemical reactivity of the tocopherol homologs with 1O2 was low, accounting for 0.1-1.5% of physical quenching with beta-tocopherol showing particularly low reactivity, resulting in the sequence alpha greater than gamma greater than delta greater than beta-tocopherol. Tocopheryl quinones were products of all tocopherol homologs, and in addition a quinone epoxide was a major product from gamma-tocopherol. This quinone epoxide was not cleaved by rat liver microsomal epoxide hydrolase; however, it reacted further with 1O2. It is concluded that methylation in position 5 of the chromane ring enhances physical quenching of 1O2, whereas chemical reactivity is favored by a methylated position 7. In view of the fact that beta-tocopherol is as effective as alpha-tocopherol in physical quenching of 1O2 but shows very low chemical reactivity, this tocopherol homolog might be particularly suitable for biological conditions in which an accumulation of oxidation products might weaken the antioxidant defense.  相似文献   

11.
Phenolic compounds are widely present in plants and they have received considerable attention due to their antioxidant property. In this article we report the results of a study of the reactivity of 10 selected phenolics (sesamol, three phenolic acids, three flavonols, one flavone, and two flavanones) with superoxide anion radical (O(2) (*)), hydroxyl radical (HO(*)) and singlet oxygen ((1)O(2)). The following generators of reactive oxygen species were used: 18-crown-6/KO(2)/dimethylsulfoxide (DMSO) or hypoxanthine/xanthine oxidase as sources of O(2) (*), the Fenton reaction carried out in a sodium trifluoroacetate (pH 6.15) for HO(*), and a mixture of alkaline aqueous H(2)O(2) and cobalt ions for (1)O(2). We have employed chemiluminescence, electron spin resonance spin trapping, and spectrophotometry techniques to examine an antioxidative property. All tested compounds acted as scavengers of various reactive oxygen species. The reactivity indexes (beta) for the reaction of the phenolic compounds with HO(*) were calculated.  相似文献   

12.
2-tert-butyl-(1), 2,6-dimethyl-(2), 2,5-dimethyl-(3), trimethyl-(4), and 2,3-dimethoxy-5-methyl-(5) substituted p-hydroquinones (QH2) were tested as a chain-breaking antioxidant during the oxidation of methyl linoleate (ML) in dodecyl sulfate micellar solution, pH 7.40, at 37 degrees C. In the absence of superoxide dismutase (SOD), all the studied QH2 displayed very moderate if any antioxidant capability. When 5-25 U/ml SOD was added, QH2 showed a pronounced ability to inhibit ML oxidation. The stoichiometric factor of inhibition was found to be about one for all the tested QH2 in the presence of SOD. The reactivities of QH2 to the ML peroxy radical increase in the order QH2 5 < QH2 3 < QH2 1 approximately QH2 2 < QH2 4; reactivity of QH2 4 exceeds that reported for the majority of phenolic antioxidants. The features of QH2 as an antioxidant in aqueous environment is likely associated with the reactivity of semiquinone (O.-) formed due to attack of the peroxy radical to QH2. O.- reacts readily with molecular oxygen with formation of superoxide (O2.-); in turn, O2.- attacks both to QH2 and ML (likely, as HO2.) that results in fast depleting QH2 and chain propagation, respectively. The addition of SOD results in purging a reaction mixture from O2.- and, as a corollary, in depressing undesirable reactions with the participation of O2.-. Under these conditions, QH2 displays the theoretically highest inhibitory activity which is determined solely by the reactivity of QH2 to the peroxy radical.  相似文献   

13.
We investigated the mechanisms of apoptosis and DNA damage induced by aminosugars in relation to their antitumor actions. The order of cytotoxic effects of aminosugars was D-mannosamine (ManN) > D-galactosamine (GalN) > D-glucosamine (GlcN). A comparison of the frequency of apoptotic cells showed the same order. DNA ladders were formed by only ManN and the formation of DNA ladders was inhibited by a caspase inhibitor. Pulsed-field gel electrophoresis showed that ManN caused cellular DNA cleavage at a lower concentration than those causing apoptosis. Cellular DNA cleavage was inhibited by catalase and enhanced by a catalase inhibitor. Flow cytometry showed that ManN enhanced the production of intracellular peroxides. These results suggest that ManN-induced apoptosis is preceded by H2O2-mediated DNA damage. The order of the extent of damage to 32P-labeled DNA fragments by aminosugars plus Cu(II) was ManN > GalN > GlcN. The DNA damage was inhibited by catalase and bathocuproine, suggesting that H2O2 reacts with Cu(I) to form the metal-peroxide complex capable of causing DNA damage. Two mechanisms of H2O2 generation from aminosugars were proposed: one is the major pathway to form a dioxo compound and NH4+; the other is the minor pathway to form a pyrazine derivative through the condensation of two molecules of an aminosugar. The order of reactivity to generate these products was ManN > GalN > GlcN. On the basis of these results, it is concluded that aminosugars, especially ManN, produce H2O2 to cause DNA damage, which mediates apoptosis resulting in tumor growth inhibition.  相似文献   

14.
Antioxidant activity of thiosulfinates derived from garlic   总被引:1,自引:0,他引:1  
Garlic extract significantly inhibited the oxidation of methyl linoleate in homogeneous acetonitrile solution, whereas the antioxidant effect of allicin-free garlic extract, prepared by removing allicin by prepared by removing allicin by preparative HPLC, was much lower than that of the garlic extract. These results suggest that the antioxidant properties are mostly attributed to the presence of allicin in the garlic extract. Allicin a major component of the thiosulfinates in garlic extract, was found to be effective for inhibiting methyl linoleate oxidation, but its efficiency was less than that of alpha-tocopherol. Next, the reactivity of allicin toward the peroxyl radical, which is a chain-propagating species, was investigated by direct ESR detection. The addition allicin to 2,2'-azobis(2,4-dimethylvaleronitrile)-peroxyl radical solution caused the signal intensity of the peroxyl radical to dose-dependently decrease, indicating that allicin is capable of scavenging the the peroxyl radical and acting as an antioxidant. Finally, we studied the structure-anioxidant activity relationship for thiosulfinates and suggested that the combination of the allyl group (-CH2CH=CH2) and the -S(O)S- group is necessary for the antioxidant action of thiosulfinates in the garlic extract. In addition, one of the two possible combinations, -S(O)S-CH2CH=CH2, was found to make a much larger contribution to the antioxidant activity of the thiosulfinates than the other, CH2=CH-CH2-S(O)S-.  相似文献   

15.
Seventeen fit women ran to exhaustion (14 +/- 4 min) at a constant speed and grade, reaching 95 +/- 3% of maximal O(2) consumption. Pre- and postexercise lung function, including airway resistance [total respiratory resistance (Rrs)] across a range of oscillation frequencies, was measured, and, on a separate day, airway reactivity was assessed via methacholine challenge. Arterial O(2) saturation decreased from 97.6 +/- 0.5% at rest to 95.1 +/- 1.9% at 1 min and to 92.5 +/- 2.6% at exhaustion. Alveolar-arterial O(2) difference (A-aDO(2)) widened to 27 +/- 7 Torr after 1 min and was maintained at this level until exhaustion. Arterial PO(2) (Pa(O(2))) fell to 80 +/- 8 Torr at 1 min and then increased to 86 +/- 9 Torr at exhaustion. This increase in Pa(O(2)) over the exercise duration occurred due to a hyperventilation-induced increase in alveolar PO(2) in the presence of a constant A-aDO(2). Arterial O(2) saturation fell with time because of increasing temperature (+2.6 +/- 0.5 degrees C) and progressive metabolic acidosis (arterial pH: 7.39 +/- 0.04 at 1 min to 7.26 +/- 0.07 at exhaustion). Plasma histamine increased throughout exercise but was inversely correlated with the fall in Pa(O(2)) at end exercise. Neither pre- nor postexercise Rrs, frequency dependence of Rrs, nor diffusing capacity for CO correlated with the exercise A-aDO(2) or Pa(O(2)). Although several subjects had a positive or borderline hyperresponsiveness to methacholine, this reactivity did not correlate with exercise-induced changes in Rrs or exercise-induced arterial hypoxemia. In conclusion, regardless of the degree of exercise-induced arterial hypoxemia at the onset of high-intensity exercise, prolonging exercise to exhaustion had no further deleterious effects on A-aDO(2), and the degree of gas exchange impairment was not related to individual differences in small or large airway function or reactivity.  相似文献   

16.
Tinberg CE  Song WJ  Izzo V  Lippard SJ 《Biochemistry》2011,50(11):1788-1798
Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of these systems on substrate (phenol; NADH) consumption and product (catechol; H(2)O(2)) generation. Single-turnover experiments revealed that only complete systems containing all three or four protein components are capable of oxidizing phenol, a major substrate for both enzymes. Under ideal conditions, the hydroxylated product yield was ~50% of the diiron centers for both systems, suggesting that these enzymes operate by half-sites reactivity mechanisms. Single-turnover studies indicated that the PH and ToMO electron-transfer components exert regulatory effects on substrate oxidation processes taking place at the hydroxylase actives sites, most likely through allostery. Steady state NADH consumption assays showed that the regulatory proteins facilitate the electron-transfer step in the hydrocarbon oxidation cycle in the absence of phenol. Under these conditions, electron consumption is coupled to H(2)O(2) formation in a hydroxylase-dependent manner. Mechanistic implications of these results are discussed.  相似文献   

17.
N(2)O(3) formed from nitric oxide in the presence of oxygen attacks thiols in proteins to yield S-nitrosothiols, which are believed to play a central role in NO signaling. In the present study we examined the N-nitrosation of N-terminal-blocked (N-blocked) tryptophan derivatives in the presence of N(2)O(3) generating systems, such as preformed nitric oxide and nitric oxide donor compounds in the presence of oxygen at pH 7.4. Under these conditions N-nitrosation of N-acetyltryptophan and lysine-tryptophan-lysine, respectively, was proven unequivocally by UV-visible spectroscopy as well as (15)N NMR spectrometry. Competition experiments performed with the known N(2)O(3) scavenger morpholine demonstrated that the selected tryptophan derivatives were nitrosated by N(2)O(3) with similar rate constants. It is further shown that the addition of ascorbate (vitamin C) induced the release of nitric oxide from N-acetyl-N-nitrosotryptophan as monitored polarographically with a NO electrode. Theoretical considerations strongly suggested that the reactivity of protein-bound tryptophan would be high enough to compete effectively with protein-bound cysteine for N(2)O(3). Our data demonstrate conclusively that N(2)O(3) nitrosates the secondary amine function (N(indole)) at the indole ring of N-blocked tryptophan with high reactivity at physiological pH values.  相似文献   

18.
Serological cross-reaction of intact as well as chemically modified LPS from O1 Vibrio cholerae 569B (Inaba) with non-O1 V. cholerae Hakata LPS, which contain alpha(1-->2)-linked N-acetyl perosamine-homopolymer constituting their O polysaccharide chain, was studied by passive hemolysis test by using their LPS as antigen for sensitizing sheep red blood cells (SRBC). The N-deacylation of the alpha(1-->2)-linked linear 3-deoxy-tetronyl perosamine-homopolymer constituting the O polysaccharide chain in 569B LPS resulted in virtual elimination of their serological reactivity with both homologous Inaba and heterologous Hakata antisera. Furthermore, when the resultant NH2 groups of the N-deacylated perosamine-homopolymers in 569B LPS were N-acylated with acetyl, propionyl or butanoyl groups, they markedly recovered the serological reactivity to a marked extent, in particular, their pronounced cross-serological reactivity with heterologous Hakata antiserum. These results are believed to be compatible with the interpretation that the Inaba antigen factor C possessed by the two bacteria studied is related to the common occurrence of the N-acyl groups, regardless of what the acyl groups are, residing in the perosamine residues of the perosamine-homopolymers constituting the O polysaccharide chain of their LPS.  相似文献   

19.
Previous studies have demonstrated that a number of membrane-active agents are capable of binding to the surface of polymorphonuclear leukocytes (PMN) resulting in an augmentation of superoxide anion and hydrogen peroxide (H2O2) production in response to soluble stimuli. It is now demonstrated that these same membrane-active agents can bind to the surface of endothelial cells and enhance their susceptibility to killing by H2O2. Membrane-active agents which are capable of synergizing with H2O2 include cationic proteins, cationic poly-amino acids, lysophosphatides and enzymes which are capable of degrading membrane phospholipids (e.g., phospholipase C, phospholipase A2 and streptolysin S). In each case, treatment of the target cells with the membrane-active agent and H2O2 produces greater damage than the sum of the damage produced by either agent separately. Since inflammatory lesions, particularly sites of bacterial infection, may contain a rich mixture of cationic substances, phospholipases and phospholipid breakdown products, these substances may contribute to the tissue damage observed at sites of inflammation by enhancing endothelial cell sensitivity to PMN-generated H2O2 as well as by augmenting the generation of H2O2 by PMNs.  相似文献   

20.
Recent studies [Mallett, T. C., and Claiborne, A. (1998) Biochemistry 37, 8790-8802] of the O2 reactivity of C42S NADH oxidase (O2 --> H2O2) revealed an asymmetric mechanism in which the two FADH2.NAD+ per reduced dimer display kinetic inequivalence. In this report we provide evidence indicating that the fully active, recombinant wild-type oxidase (O2 --> 2H2O) displays thermodynamic inequivalence between the two active sites per dimer. Using NADPH to generate the free reduced wild-type enzyme (EH2'/EH4), we have shown that NAD+ titrations lead to differential behavior as only one FADH2 per dimer binds NAD+ tightly to give the charge-transfer complex. The second FADH2, in contrast, transfers its electrons to the single Cys42-sulfenic acid (Cys42-SOH) redox center, which remains oxidized during the reductive titration. Titrations of the reduced NADH oxidase with oxidized 3-acetylpyridine and 3-aminopyridine adenine dinucleotides further support the conclusion that the two FADH2 per dimer in wild-type enzyme can be described as distinct "charge-transfer" and "electron-transfer" sites, with the latter site giving rise to either intramolecular (Cys42-SOH) or bimolecular (pyridine nucleotide) reduction. The reduced C42S mutant is not capable of intramolecular electron transfer on binding pyridine nucleotides, thus confirming that the Cys42-SOH center is in fact the source of the redox asymmetry observed with wild-type oxidase. These observations on the role of Cys42-SOH in the expression of thermodynamic inequivalence as observed in wild-type NADH oxidase complement the previously described kinetic inequivalence of the C42S mutant; taken together, these results provide the overlapping framework for an alternating sites cooperativity model of oxidase action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号