首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.  相似文献   

3.
4.
5.
Oxygen consumption and diffusion effects in photodynamic therapy   总被引:19,自引:0,他引:19  
Effects of oxygen consumption in photodynamic therapy (PDT) are considered theoretically and experimentally. A mathematical model of the Type II mechanism of photooxidation is used to compute estimates of the rate of therapy-dependent in vivo oxygen depletion resulting from reactions of singlet oxygen (1O2) with intracellular substrate. Calculations indicate that PDT carried out at incident light intensities of 50 mW/cm2 may consume 3O2 at rates as high as 6-9 microM s-1. An approximate model of oxygen diffusion shows that these consumption rates are large enough to decrease the radius of oxygenated cells around an isolated capillary. Thus, during photoirradiation, cells sufficiently remote from the capillary wall may reside at oxygen tensions that are low enough to preclude or minimize 1O2-mediated damage. This effect is more pronounced at higher power densities and accounts for an enhanced therapeutic response in tumors treated with 360 J/cm2 delivered at 50 mW/cm2 compared to the same light dose delivered at 200 mW/cm2. The analysis further suggests that the oxygen depletion could be partially overcome by fractionating the light delivery. In a transplanted mammary tumor model, a regimen of 30-s exposures followed by 30-s dark periods produced significantly longer delays in tumor growth when compared to the continuous delivery of the same total fluence.  相似文献   

6.
7.
In recent years, smart materials have piqued the interest of scientists and physicians in the biomedical community owing to their ability to modify their properties in response to an external stimulation or changes in their surroundings. Biocompatible piezoelectric materials are an interesting group of smart materials due to their ability to produce electrical charges without an external power source. Electric signals produced by piezoelectric scaffolds can renew and regenerate tissues through special pathways like that found in the extracellular matrix. This review summarizes the piezoelectric phenomenon, piezoelectric effects generated within biological tissues, piezoelectric biomaterials, and their applications in tissue engineering and their use as biosensors.  相似文献   

8.
9.
Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self‐assembly of hydrogel microblocks and the use of leachable particles in three‐dimensional (3D) layer‐by‐layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

10.
The relative importance of transport by diffusion and convection in permeable tissues is investigated in three-dimensional structures. The transport of a solute takes place from a number of sources embedded in the tissue, to a number of sinks similarly embedded. An enhancement factor E is defined to be the ratio of the transport rate in the presence of a pressure difference between the sources and sinks, to the transport rate without a pressure difference. It is shown that E is a unique function of a parameter W, which characterizes the properties of the tissue and the pressure difference. This relation is independent of the number or the geometries of the sources and sinks.This relation is compared with experimental data obtained in a hollow fiber tissue culture device, with two sets of hollow fibers kept at different pressures. This relation is also used to estimate the importance of convection in vivo for a wide range of mammalian tissues and solute molecules.  相似文献   

11.
12.
13.
The functional response is a fundamental model of the relationship between consumer intake rate and resource abundance. The random walk is a fundamental model of animal movement and is well approximated by simple diffusion. Both models are central to our understanding of numerous ecological processes but are rarely linked in ecological theory. To derive a synthetic model, we draw on the common logical premise underlying these models and show how the diffusion and consumption rates of consumers depend on elementary attributes of naturally occurring consumer-resource interactions: the abundance, spatial aggregation, and traveling speed of resources as well as consumer handling time and directional persistence. We show that resource aggregation may lead to increased consumer diffusion and, in the case of mobile resources, reduced consumption rate. Resource-dependent movement patterns have traditionally been attributed to area-restricted search, reflecting adaptive decision making by the consumer. Our synthesis provides a simple alternative hypothesis that such patterns could also arise as a by-product of statistical movement mechanics.  相似文献   

14.
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.KEY WORDS: Regenerative medicine, Stem cells, Magnetic resonance imaging, Paramagnetic contrast agents, CEST, Perfluorocarbon particles, Biosensor, Cell labeling, Cellular function  相似文献   

15.
16.
Coexistence in a simple food chain with diffusion   总被引:2,自引:0,他引:2  
We show the global existence of classical positive solutions in each component of a Lotka-Volterra system with diffusion and logistic growing conditions. We are mainly interested in the search of coexistence states solving the associated elliptic problem under homogeneous Dirichlet boundary conditions.  相似文献   

17.
Hair follicles are complex organs composed of the dermal papilla (DP), dermal sheath (DS), outer root sheath (ORS), inner root sheath (IRS) and hair shaft. Development of hair follicles begins towards the end of the first trimester of pregnancy and is controlled by epidermal–mesenchymal interaction (EMI), which is a signaling cascade between epidermal and mesenchymal cell populations. Hair grows in cycles of various phases. Specifically, anagen is the growth phase, catagen is the involuting or regressing phase and telogen is the resting or quiescent phase. Alopecia is not life threatening, but alopecia often causes severe mental stress. In addition, the number of individuals afflicted by alopecia patients has been increasing steadily. Currently there are two methods employed to treat alopecia, drug or natural substance therapy and human hair transplantation. Although drug or natural substance therapy may retard the progress of alopecia or prevent future hair loss, it may also accelerate hair loss when the medication is stopped after prolonged use. Conversely, the transplantation of human hair involves taking plugs of natural hair from areas in which occipital hair is growing and transplanting them to bald areas. However, the number of hairs that can be transplanted is limited in that only three such operations can generally be performed. To overcome such problems, many researchers have attempted to revive hair follicles by culturing hair follicle cells or mesenchymal cells in vitro and then implanting them in the treatment area.  相似文献   

18.
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them toward targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro.  相似文献   

19.
The interior structure of aerobic granules is highly heterogeneous, hence, affecting the transport and reaction processes in the granules. The granule structure and the dissolved oxygen profiles were probed at the same granule in the current work for possible estimation of transport and kinetic parameters in the granule. With the tested granules fed by phenol or acetate as carbon source, most inflow oxygen was consumed by an active layer thickness of less than 125 μm on the granule surface. The confocal laser scanning microscopy scans also revealed a surface layer thickness of approximately 100 μm consisting of cells. The diffusivities of oxygen transport and the kinetic constant of oxygen consumption in the active layers only were evaluated. The theoretical models adopted in literature that ignored the contributions of the layered structure of aerobic granule could have overlooked the possible limitations on oxygen transport.  相似文献   

20.
N A Teplits 《Ontogenez》1975,6(4):348-356
The intensity of oxygen consumption and the activity of cytochrome oxidase have been studied in the homogenate, mitochondria and nuclei of the limb muscle tissue in axolotls after the suppression of regenerative ability by X-irradiation and its experimental restoration. Under the suppression of regenerative ability, the oxygen consumption was inhibited. The cytochrome oxidase activity in the homogenate and mitochondria decreased and in the nuclei remained at the same level or even increased as compared with the intact limb. Under the restoration of regenerative ability, the intensity of respiration of the homogenate and mitochondria increased and this increase was accompanied by the increase of the cytochrome oxidase activity. The activity of cytochrome oxidase in the nuclei did not change at the stage of blastema and sharply fell at the stage of formed limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号