首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tetramerization of p53 is crucial to exert its biological activity, and nucleolar disruption is sufficient to activate p53. We previously demonstrated that nucleolar stress induces translocation of the nucleolar protein MYBBP1A from the nucleolus to the nucleoplasm and enhances p53 activity. However, whether and how MYBBP1A regulates p53 tetramerization in response to nucleolar stress remain unclear. In this study, we demonstrated that MYBBP1A enhances p53 tetramerization, followed by acetylation under nucleolar stress. We found that MYBBP1A has two regions that directly bind to lysine residues of the p53 C-terminal regulatory domain. MYBBP1A formed a self-assembled complex that provided a molecular platform for p53 tetramerization and enhanced p300-mediated acetylation of the p53 tetramer. Moreover, our results show that MYBBP1A functions to enhance p53 tetramerization that is necessary for p53 activation, followed by cell death with actinomycin D treatment. Thus, we suggest that MYBBP1A plays a pivotal role in the cellular stress response.  相似文献   

3.
Cells eventually exit from mitosis during sustained arrest at the spindle checkpoint, without sister chromatid separation and cytokinesis. The resulting tetraploid cells are arrested in the subsequent G1 phase in a p53-dependent manner by the regulatory function of the postmitotic G1 checkpoint. Here we report how the nucleolus plays a critical role in activation of the postmitotic G1 checkpoint. During mitosis, the nucleolus is disrupted and many nucleolar proteins are translocated from the nucleolus into the cytoplasm. Among the nucleolar factors, Myb-binding protein 1a (MYBBP1A) induces the acetylation and accumulation of p53 by enhancing the interaction between p300 and p53 during prolonged mitosis. MYBBP1A-dependent p53 activation is essential for the postmitotic G1 checkpoint. Thus, our results demonstrate a novel nucleolar function that monitors the prolongation of mitosis and converts its signal into activation of the checkpoint machinery.  相似文献   

4.
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway – RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.  相似文献   

5.
6.
7.
Rubbi CP  Milner J 《The EMBO journal》2003,22(22):6068-6077
p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle.  相似文献   

8.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein involved in ribosome biogenesis, and promotes its polyubiquitination and degradation. Overexpression of B23 induces a cell cycle arrest in normal fibroblasts, whereas in cells lacking p53 it promotes S phase entry. Conversely, knocking down B23 inhibits the processing of preribosomal RNA and induces cell death. Further, oncogenic Ras induces B23 only in ARF null cells, but not in cells that retain wild-type ARF. Together, our results reveal a molecular mechanism of ARF in regulating ribosome biogenesis and cell proliferation via inhibiting B23, and suggest a nucleolar role of ARF in surveillance of oncogenic insults.  相似文献   

9.
The nucleolus is a subnuclear compartment, which governs ribosome biogenesis. Moreover, it functions as hub in the stress response by orchestrating a variety of processes, such as regulation of cell cycle progression, senescence and apoptosis. Emerging evidence links the nucleolus also to the control of genomic stability and the development of human malignancies. Peter Pan (PPAN) is an essential ribosome biogenesis factor localized to nucleoli and mitochondria. We earlier showed that PPAN depletion triggers p53-independent nucleolar stress and apoptosis. In this study we investigated the precise localization of nucleolar PPAN during cell cycle and its function in cell cycle regulation. We show that PPAN knockdown impairs cell proliferation and induces G0/G1 as well as later G2/M cell cycle arrest in cancer cells. Although PPAN knockdown stabilizes the tumor suppressor p53 and induces CDKN1A/p21, the proliferation defects occur largely in a p53/p21-independent manner. We noticed a reduced number of knockdown cells entering cytokinesis and an elevation of binucleation. PPAN knockdown is also associated with increased H2A.X phosphorylation (γH2A.X) in cancer cells. We evaluated a potential signaling axis through the DNA damage response kinases ATM and ATR and alternatively apoptosis as a potent driver of γH2A.X. Interestingly, PPAN knockdown does not involve activation of ATM/ATR. Instead, γH2A.X is generated as a consequence of apoptosis induction in cancer cells. Strikingly, PPAN depletion in human fibroblasts did neither provoke apoptosis nor H2A.X phosphorylation, but recapitulated p53 stabilization. In summary, our data underline the notion that the PPAN-mediated, p53-independent nucleolar stress response has multiple facets.  相似文献   

10.
11.
12.
13.
p21cip1 is a protein with a dual function in oncogenesis depending mainly on its intracellular localization: tumor suppressor in the nucleus and oncogenic in the cytoplasm. After DNA damage, p21cip1 increases and accumulates in the nucleus to ensure cell cycle arrest. We show here that the nuclear accumulation of p21cip1 is not only a consequence of its increased levels but to a DNA damage cellular response, which is ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) and p53 independent. Furthermore, after DNA damage, p21cip1 not only accumulates in the nucleoplasm but also in the disrupted nucleolus. Inside the nucleolus, it is found in spherical structures, which are not a protrusion of the nucleoplasm. The steady‐state distribution of p21cip1 in the nucleolus resulted from a highly dynamic equilibrium between nucleoplasmic and nucleolar p21cip1 and correlated with the inhibition of p21cip1 nuclear export. Most interestingly, inhibition of ribosomal export after expressing a dominant‐negative mutant of nucleophosmin induced p21cip1 accumulation in the nucleus and the nucleolus in the absence of DNA damage. This proved the existence of a nucleolar export route to the cytoplasm for p21cip1 in control conditions that would be inhibited upon DNA damage leading to nuclear and nucleolar accumulation of p21cip1.  相似文献   

14.
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer.  相似文献   

15.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike nucleoplasmic localized MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus and the molecular target and mechanism of ARF's p53-independent function remain both controversial and a fertile field of research. Recent study has identified the nucleolar protein B23 as a target of ARF for implementing its growth inhibitory function. The ability of ARF to block cell cycle progression through the MDM2-p53 pathway and to suppress ribosomal biogenesis through B23 suggest a role for ARF in coordinating inhibitions of growth and proliferation.  相似文献   

16.
17.
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing   总被引:9,自引:0,他引:9  
The p19(Arf) tumor suppressor, a nucleolar protein, binds to Mdm2 to induce p53-dependent cell cycle arrest. Arf also prevents the proliferation of cells lacking Mdm2 and p53, albeit less efficiently. We show that p19(Arf) inhibits production of ribosomal RNA, retarding processing of 47/45S and 32S precursors. These effects correlate with but do not strictly depend upon inhibition of rRNA biosynthesis or cell cycle arrest, are not mimicked by p53, and require neither p53 nor Mdm2. Arf mutants lacking conserved amino acid residues 2-14 do not block rRNA synthesis and processing or inhibit cell proliferation. Evolution may have linked a primordial nucleolar Arf function to Mdm2 and p53, creating a more efficient checkpoint-signaling pathway for coordinating ribosomal biogenesis and cell cycle progression.  相似文献   

18.
19.
Bleomycin is an anti-cancer drug that induces both apoptosis and senescence, two processes thought to involve caveolin-1. Here we investigate the role of caveolin-1 in bleomycin-induced senescence. We show that bleomycin-treated A549 cells exhibit: senescence-like cell morphology; a senescence-associated increase in SA-beta-galactosidase activity; cell cycle arrest; and upregulation of p53 and p21. As predicted, we find that caveolin-1 amount increases in response to bleomycin-treatment and that modulation of caveolin-1 affects p21 and p53 levels, cell cycling, and senescence (SA-beta-galactosidase activity). Interestingly, senescence-associated cell cycle arrest via p53 and p21 and SA-beta-galactosidase activity is reduced in young A549 cells when short hairpin RNA specific for caveolin-1 was applied before bleomycin-treatment. Our results support the hypothesis that downregulation of caveolin-1 expression affects bleomycin-induced cell cycle arrest and subsequent cellular senescence that is driven by p53 and p21.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号