首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we report a crystal structure of LRP6 E1 bound to an antibody, revealing that the E1 domain is a peptide recognition module. Remarkably, the consensus E1 binding sequence is a close match to a conserved tripeptide motif present in all Wnt inhibitors that bind LRP5/6. We show that this motif is important for DKK1 and SOST binding to LRP6 and for inhibitory function, providing a detailed structural explanation for the effect of the BMD mutations.  相似文献   

2.
LRP5 and LRP6 are proteins predicted to contain four six-bladed β-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region. This sequence is related closely to a previously identified motif in laminin that mediates its interaction with the β-propeller domain of nidogen. However, the NXI motif is not involved in the interaction of sclerostin with LRP4 (another β-propeller containing protein in the LRP family). A peptide derived from the loop 2 region of sclerostin blocked the interaction of sclerostin with LRP5/6 and also inhibited Wnt1 but not Wnt3A or Wnt9B signaling. This suggests that these Wnts interact with LRP6 in different ways.  相似文献   

3.
Sclerosteosis is an autosomal recessive disease that is characterized by overgrowth of bone tissue and is linked to mutations in the gene encoding the secreted protein SOST. Sclerosteosis shares remarkable similarities with "high bone mass" diseases caused by "gain-of-function" mutations in the LRP5 gene, which encodes a coreceptor for Wnt signaling proteins. We show here that SOST antagonizes Wnt signaling in Xenopus embryos and mammalian cells by binding to the extracellular domain of the Wnt coreceptors LRP5 and LRP6 and disrupting Wnt-induced Frizzled-LRP complex formation. Our findings suggest that SOST is an antagonist for Wnt signaling and that the loss of SOST function likely leads to the hyperactivation of Wnt signaling that underlies bone overgrowth seen in sclerosteosis patients.  相似文献   

4.
The loss of the SOST gene product sclerostin leads to sclerosteosis characterized by high bone mass. In this report, we found that sclerostin could antagonize canonical Wnt signaling in human embryonic kidney A293T cells and mouse osteoblastic MC3T3 cells. This sclerostin-mediated antagonism could be reversed by overexpression of Wnt co-receptor low density lipoprotein receptor-related protein (LRP) 5. In addition, we found that sclerostin bound to LRP5 as well as LRP6 and identified the first two YWTD-EGF repeat domains of LRP5 as being responsible for the binding. Although these two repeat domains are required for transduction of canonical Wnt signals, canonical Wnt did not appear to compete with sclerostin for binding to LRP5. Examination of the expression of sclerostin and Wnt7b, an autocrine canonical Wnt, during primary calvarial osteoblast differentiation revealed that sclerostin is expressed at late stages of osteoblast differentiation coinciding with the expression of osteogenic marker osteocalcin and trailing after the expression of Wnt7b. Given the plethora of evidence indicating that canonical Wnt signaling stimulates osteogenesis, we believe that the high bone mass phenotype associated with the loss of sclerostin may be attributed, at least in part, to an increase in canonical Wnt signaling resulting from the reduction in sclerostin-mediated Wnt antagonism.  相似文献   

5.
PURPOSE OF REVIEW: This review summarizes recent findings concerning the genomic variations of the lipoprotein receptor-related protein 5 (LPR5) in relation to bone biology. RECENT FINDINGS: Mutations in the LRP5 gene causing high bone mass (HBM) and osteoporosis-pseudoglioma (OPPG) underscored the role of the Wnt-LRP5 canonical signaling on bone formation. Additional LRP5 activating mutations have been identified in a variety of sclerosing bone dysplasias, improving the diagnostic classification of these disorders. Association of polymorphisms in LRP5 with bone mineral density indicate that LRP5 genetic variation contribute to the risk of osteoporosis. Transgenic mice carrying the LRP5 HBM mutation have improved bone biomechanical properties, and the molecular mechanisms by which this mutation exerts its effects have been clarified. A number of KO mice have shown the complex effects of the Wnt-LRP5 pathway on bone mass and skeletal morphology. In vitro studies indicate that osteoblasts produce a variety of Wnts, the LRP5 co-receptor frizzled (Fzd), as well as LRP5 and Wnt inhibitors, i.e. dickkopf (Dkk1) and frizzled-related proteins (Sfrps), respectively, and delineate the role of these molecules in regulating the commitment of mesenchymal stem cells along the osteoblastic lineage. SUMMARY: Identification of pathogenic mutations and allelic variations in LRP5 has improved our understanding of the physiology of bone mass acquisition and the pathophysiology of several bone diseases, including osteoporosis. Understanding how complex interactions between agonistic and inhibitory factors in the Wnt-LRP5 canonical pathway influence osteoblast functions has the potential of providing new anabolic treatments for osteoporosis.  相似文献   

6.
The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.  相似文献   

7.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   

8.
To gain insights into the mechanism of action of sclerostin, a protein that regulates bone mass, we performed yeast two-hybrid analyses using human SOST (sclerostin) cDNA cloned into pGBKT7 DNA-binding domain vector as a bait, and a normalized, high-complexity, universal cDNA library in a GAL4 activating domain vector. We identified an interaction between sclerostin and the carboxyl-terminal portion of the receptor tyrosine-protein kinase erbB-3. To determine the biological relevance of this interaction, we treated MC3T3-E1 mouse osteoblast cells transfected with either a SOST expression plasmid or a control vector, with recombinant heregulin/neuregulin. Phospho-p44/42 (Thr202/Tyr204) MAPK was assessed in heregulin/neuregulin treated cells. We observed an increase in phospho-p44/42 (Thr202/Tyr204) MAPK concentrations in SOST transfected cells but not in cells transfected with a control vector, thus demonstrating a modulatory effect of sclerostin on heregulin/neuregulin signaling in osteoblasts. The data demonstrate that sclerostin functions in part, by modulating the activity of erbB-3.  相似文献   

9.
The Wnt/β-catenin signaling pathway is a key regulator of bone homeostasis. Sclerostin act as an extracellular inhibitor of canonical Wnt signaling through high-affinity binding to the Wnt co-receptor LRP5/6. Disruption of the interaction between LRP5/6 and sclerostin has been recognized as a therapeutic target for osteoporosis. We identified a quinoxaline moiety as a new small-molecule inhibitor of the LRP5/6-sclerostin interaction through pharmacophore-based virtual screening, docking simulations, and in vitro assays. Structure-activity relationship studies and binding mode hypotheses were used to optimize the scaffold and yield the compound BMD4503-2, which recovered the downregulated activity of the Wnt/β-catenin signaling pathway by competitive binding to the LRP5/6-sclerostin complex. Overall, this study showed that the optimized structure-based drug design was a promising approach for the development of small-molecule inhibitors of the LRP5/6-sclerostin interaction. A novel scaffold offered considerable insights into the structural basis for binding to LRP5/6 and disruption of the sclerostin-mediated inhibition of Wnt signaling.  相似文献   

10.
A single point mutation (G to T) in the low-density lipoprotein receptor related protein 5 (LRP5) gene results in a glycine to valine amino acid change (G171V) and is responsible for an autosomal dominant high bone mass trait (HBM) in two independent kindreds. LRP5 acts as a co-receptor to Wnts with Frizzled family members and transduces Wnt-canonical signals which can be antagonized by LRP5 ligand, Dickkopf 1 (Dkk1). In the presence of Wnt1, LRP5 or the HBM variant (LRP5-G171V) induces beta-catenin nuclear translocation and activates T cell factor (TCF)-luciferase reporter activity. HBM variant suppresses Dkk1 function and this results in reduced inhibition of TCF activity as compared to that with LRP5. Structural analysis of LRP5 revealed that the HBM mutation lies in the 4th blade of the first beta-propeller domain. To elucidate the functional significance and consequence of the LRP5-G171V mutation in vitro, we took a structure-based approach to design 15 specific LRP5 point mutations. These included (a) substitutions at the G171 in blade 4, (b) mutations in blades 2-6 of beta-propeller 1, and (c) mutations in beta-propellers 2, 3 and 4. Here we show that substitutions of glycine at 171 to K, F, I and Q also resulted in HBM-like activity in the presence of Wnt1 and Dkk1. This indicates the importance of the G171 site rather than the effect of specific amino acid modification to LRP5 receptor function. Interestingly, G171 equivalent residue mutations in other blades of beta-propeller 1 (A65V, S127V, L200V, A214V and M282V) resulted in LRP5-G171V-like block of Dkk1 function. However G171V type mutations in other beta-propellers of LRP5 did not result in resistance to Dkk1 function. These results indicate the importance of LRP5 beta-propeller 1 for Dkk1 function and Wnt signaling. These data and additional comparative structural analysis of the LRP5 family member LDLR suggest a potential functional role of the first beta-propeller domain through intramolecular interaction with other domains of LRP5 wherein Dkk1 can bind. Such studies may also lead to a better understanding of the mechanisms underlying the reduced function of Dkk1-like inhibitory ligands of LRP5 with HBM-like mutations and its relationship to increased bone density phenotypes.  相似文献   

11.
Genetic studies recently unraveled the genetic cause of sclerosteosis, a rare skeletal dysplasia characterized by a generalized increase in bone mass. Different loss-of-function mutations were identified in SOST, a gene with no homology to any known gene. This SOST gene is also involved in the pathogenesis of van Buchem disease, a disorder closely resembling sclerosteosis, since a 52-kb deletion located downstream of SOST is found in patients diagnosed with this condition. Molecular studies showed a very restricted expression pattern of SOST and its gene product, sclerostin, with areas in the bone tissue, more precisely in cells of the osteoblast lineage, being the major sites of expression. Sclerostin is a secreted protein with a cysteine knot motif. In vitro studies demonstrated that sclerostin acts as a modulator of BMP signaling by binding to different members of the BMP growth factor family and acting on downstream BMP signal transduction events. The important function of sclerostin in bone metabolism has also been proven in vivo by the osteopenic phenotype of transgenic mice overexpressing SOST in bone. The identification of sclerostin as an important protein in bone metabolism opens new perspectives for the development of anabolic therapeutics to prevent and treat osteoporosis.  相似文献   

12.
Bone formation responds to mechanical loading, which is believed to be mediated by osteocytes. Previous theories assumed that loading stimulates osteocytes to secrete signals that stimulate bone formation. In computer simulations this 'stimulatory' theory successfully produced load-aligned trabecular structures. In recent years, however, it was discovered that osteocytes inhibit bone formation via the protein sclerostin. To reconcile this with strain-induced bone formation, one must assume that sclerostin secretion decreases with mechanical loading. This leads to a new 'inhibitory' theory in which loading inhibits osteocytes from inhibiting bone formation. Here we used computer simulations to show that a sclerostin-based model is able to produce a load-aligned trabecular architecture. An important difference appeared when we compared the response of the stimulatory and inhibitory models to loss of osteocytes, and found that the inhibitory pathway prevents the loss of trabeculae that is seen with the stimulatory model. Further, we demonstrated with combined stimulatory/inhibitory models that the two pathways can work side-by-side to achieve a load-adapted bone architecture.  相似文献   

13.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

14.
The low density lipoprotein (LDL) receptor-related protein 5 (LRP5) is a co-receptor for Wnt proteins and a major regulator in bone homeostasis. Human genetic studies have shown that recessive loss-of-function mutations in LRP5 are linked to osteoporosis, while on the contrary, dominant missense LRP5 mutations are associated with high bone mass (HBM) diseases. All LRP5 HBM mutations are clustered in a single region in the LRP5 extracellular domain and presumably result in elevated Wnt signaling in bone forming cells. Here we show that LRP5 HBM mutant proteins exhibit reduced binding to a secreted bone-specific LRP5 antagonist, SOST, and consequently are more refractory to inhibition by SOST. As loss-of-function mutations in the SOST gene are associated with Sclerosteosis, another disorder of excessive bone growth, our study suggests that the SOST-LRP5 antagonistic interaction plays a central role in bone mass regulation and may represent a nodal point for therapeutic intervention for osteoporosis and other bone diseases.  相似文献   

15.
Bone is a dynamic tissue that is subject to the balanced processes of bone formation and bone resorption. Imbalance can give rise to skeletal pathologies with increased bone density. In recent years, several genes underlying such sclerosing bone disorders have been identified. The LDL receptor-related protein 5 (LRP5) gene has been shown to be involved in both osteoporosis-pseudoglioma syndrome and the high-bone-mass phenotype and turned out to be an important regulator of peak bone mass in vertebrates. We performed mutation analysis of the LRP5 gene in 10 families or isolated patients with different conditions with an increased bone density, including endosteal hyperostosis, Van Buchem disease, autosomal dominant osteosclerosis, and osteopetrosis type I. Direct sequencing of the LRP5 gene revealed 19 sequence variants. Thirteen of these were confirmed as polymorphisms, but six novel missense mutations (D111Y, G171R, A214T, A214V, A242T, and T253I) are most likely disease causing. Like the previously reported mutation (G171V) that causes the high-bone-mass phenotype, all mutations are located in the aminoterminal part of the gene, before the first epidermal growth factor-like domain. These results indicate that, despite the different diagnoses that can be made, conditions with an increased bone density affecting mainly the cortices of the long bones and the skull are often caused by mutations in the LRP5 gene. Functional analysis of the effects of the various mutations will be of interest, to evaluate whether all the mutations give rise to the same pathogenic mechanism.  相似文献   

16.
Sweeney ST  Davis GW 《Neuron》2002,36(3):403-416
In a genetic screen for genes that control synapse development, we have identified spinster (spin), which encodes a multipass transmembrane protein. spin mutant synapses reveal a 200% increase in bouton number and a deficit in presynaptic release. We demonstrate that spin is expressed in both nerve and muscle and is required both pre- and postsynaptically for normal synaptic growth. We have localized Spin to a late endosomal compartment and present evidence for altered endosomal/lysosomal function in spin. We also present evidence that synaptic overgrowth in spin is caused by enhanced/misregulated TGF-beta signaling. TGF-beta receptor mutants show dose-dependent suppression of synaptic overgrowth in spin. Furthermore, mutations in Dad, an inhibitory Smad, cause synapse overgrowth. We present a model for synaptic growth control with implications for the etiology of lysosomal storage and neurodegenerative disease.  相似文献   

17.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   

18.
Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.  相似文献   

19.
v-Src transforms fibroblasts in vitro and causes tumor formation in the animal by tyrosine phosphorylation of critical cellular substrates. Exactly how v-Src interacts with these substrates remains unknown. One of its substrates, the adaptor protein Shc, is thought to play a crucial role during cellular transformation by v-Src by linking v-Src to Ras. We used Shc proteins with mutations in either the phosphotyrosine binding (PTB) or Src homology 2 domain to determine that phosphorylation of Shc in v-Src-expressing cells depends on the presence of a functional PTB domain. We purified a 100-kDa Shc PTB-binding protein from Src-transformed cells that was identified as the beta chain of the low density lipoprotein receptor-related protein LRP1. LRP1 acts as an import receptor for a variety of proteins and is involved in clearance of the beta-amyloid precursor protein. This study shows that LRP1 is tyrosine-phosphorylated in v-Src-transformed cells and that tyrosine-phosphorylated LRP1 binds in vivo and in vitro to Shc. The association between Shc and LRP1 may provide a mechanism for recruitment of Shc to the plasma membrane where it is phosphorylated by v-Src. It is at the membrane that Shc is thought to be involved in Ras activation. These observations further suggest that LRP1 could function as a signaling receptor and may provide new avenues to investigate its possible role during embryonal development and the onset of Alzheimer's disease.  相似文献   

20.
Osteoclast‐mediated bone resorption precedes osteoblast‐mediated bone formation through early adulthood, but formation fails to keep pace with resorption during aging. We previously identified several factors produced by osteoclasts that promote bone formation. In this study, we determined if osteoclast‐produced factors contribute to the impaired bone formation with aging. We previously found that mice between the ages of 18 and 22 months develop age‐related bone loss. Bone marrow‐derived pre‐osteoclasts were isolated from 6‐week, 12‐month, and 18‐ to 24‐month‐old mice and differentiated into osteoclasts in vitro. Conditioned media were collected and compared for osteoblast mineralization support. Conditioned medium from osteoclasts from all ages was able to support mineralization of bone marrow stromal cells. Concentrating the conditioned medium from 6‐week‐old and 12‐month‐old mouse marrow cells‐derived osteoclasts enhanced mineralization support whereas concentrated conditioned medium from 18‐ to 24‐month‐old mouse marrow‐derived osteoclasts repressed mineralization compared to base medium. This observation suggests that an inhibitor of mineralization was secreted by aged murine osteoclasts. Gene and protein analysis revealed that the Wnt antagonist sclerostin was significantly elevated in the conditioned media from 24‐month‐old mouse cells compared to 6‐week‐old mouse cells. Antibodies directed to sclerostin neutralized the influences of the aged mouse cell concentrated conditioned media on mineralization. Sclerostin is primarily produced by osteocytes in young animals. This study demonstrates that osteoclasts from aged mice also produce sclerostin in quantities that may contribute to the age‐related impairment in bone formation. J. Cell. Biochem. 114: 1901–1907, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号