首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gastrulation of the vertebrate embryo culminates in the formation of three primary germ layers: ectoderm, mesoderm and endoderm. The endoderm contributes to the lining of the gut and the associated organs. New components of the molecular pathway for endoderm specification have been identified in the zebrafish and Xenopus. In the mouse, the activity of orthologous factors is involved with the allocation and differentiation of the definitive endoderm. Morphogenetic interactions between the endoderm and the other germ layer derivatives are critical for the morphogenesis of head structures and organogenesis of gut derivatives.  相似文献   

3.

Background  

The number of genes characterized in liver development is steadily increasing, but the origin of liver precursor cells and the molecular control of liver formation remain poorly understood. Existing theories about formation of zebrafish visceral organs emphasize either their budding from the endodermal rod or formation of independent anlage followed by their later fusion, but none of these is completely satisfactory in explaining liver organogenesis in zebrafish.  相似文献   

4.
During embryogenesis, complex morphogenetic events lead endodermal cells to coalesce at the midline and form the primitive gut tube and associated organs. While several genes have recently been implicated in endoderm differentiation, we know little about the genes that regulate endodermal morphogenesis. Here, we show that vascular endothelial growth factor C (Vegfc), an angiogenic as well as a lymphangiogenic factor, is unexpectedly involved in this process in zebrafish. Reducing Vegfc levels using morpholino antisense oligonucleotides, or through overexpression of a soluble form of the VEGFC receptor, VEGFR-3, affects the coalescence of endodermal cells in the anterior midline, leading to the formation of a forked gut tube and the duplication of the liver and pancreatic buds. Further analyses indicate that Vegfc is additionally required for the initial formation of the dorsal endoderm. We also demonstrate that Vegfc is required for vasculogenesis as well as angiogenesis in the zebrafish embryo. These data argue for a requirement of Vegfc in the developing vasculature and, more surprisingly, implicate Vegfc signalling in two distinct steps during endoderm development, first during the initial differentiation of the dorsal endoderm, and second in the coalescence of the anterior endoderm to the midline.  相似文献   

5.
6.
The target of rapamycin (TOR) signaling pathway regulates cell growth and proliferation, however the extent to which TOR signaling mediates particular organogenesis programs remains to be determined. Here we report an examination of TOR signaling during zebrafish development, using a combination of small molecule treatment and morpholino-mediated gene knockdown. First, we amplified and sequenced the full-length cDNA for the zebrafish TOR ortholog (ztor). By in situ hybridization, we found that ztor is expressed ubiquitously in the early embryo, but displays a dynamic pattern in the gut between 48 and 72 h post-fertilization (hpf). Treatment of zebrafish embryos with rapamycin induced only a mild general developmental delay up to 72 hpf, but digestive tract development became arrested at the primitive gut tube stage. Rapamycin inhibited intestinal epithelial growth, morphogenesis and differentiation. Using morpholino-mediated gene knockdown of TOR pathway components, we show that this effect is mediated specifically by the rapamycin-sensitive TOR complex 1 (TORC1). Thus, in addition to regulating cell growth and proliferation, TOR signaling controls the developmental program guiding epithelial morphogenesis in the vertebrate intestine.  相似文献   

7.
The embryonic gut of vertebrates consists of endodermal epithelium, surrounding mesenchyme derived from splanchnic mesoderm and enteric neuronal components derived from neural crest cells. During gut organogenesis, the mesenchyme differentiates into distinct concentric layers around the endodermal epithelium forming the lamina propria, muscularis mucosae, submucosa and lamina muscularis (the smooth muscle layer). The smooth muscle layer and enteric plexus are formed at the outermost part of the gut, always some distance away from the epithelium. How this topographical organization of gut mesenchyme is established is largely unknown. Here we show the following: (1) Endodermal epithelium inhibits differentiation of smooth muscle and enteric neurons in adjacent mesenchyme. (2) Endodermal epithelium activates expression of patched and BMP4 in adjacent non-smooth muscle mesenchyme, which later differentiates into the lamina propria and submucosa. (3) Sonic hedgehog (Shh) is expressed in endodermal epithelium and disruption of Shh-signaling by cyclopamine induces differentiation of smooth muscle and a large number of neurons even in the area adjacent to epithelium. (4) Shh can mimic the effect of endodermal epithelium on the concentric stratification of the gut. Taken together, these data suggest that endoderm-derived Shh is responsible for the patterning across the radial axis of the gut through induction of inner components and inhibition of outer components, such as smooth muscle and enteric neurons.  相似文献   

8.
Formation of the liver in zebrafish has been analyzed during normal embryogenesis using ceruloplasmin (Cp) as a specific marker. The asymmetric expression of Cp has been detected in dorsal endoderm at 16 hpf and later in the early hepatic cells in the yolk sac. The liver primordium can be detected after 32 hpf. In oep-/- mutant, which lacks dorsal endoderm, the liver fails to form. In the notochordless flh-/- mutant, the asymmetry of the liver has been lost. Therefore the notochord, dorsal endoderm and endoderm of the yolk sac play a role in liver formation in zebrafish.  相似文献   

9.
10.
11.
12.
Sfrp5 belongs to the family of secreted frizzled related proteins (Sfrp), secreted inhibitors of Wingless-MMTV Integration Site (Wnt) signaling, which play an important role in cancer and development. We selected sfrp5 because of its compelling expression profile in the developing endoderm in zebrafish, Danio rerio. In this study, overexpression of sfrp5 in embryos results in defects in both convergent extension (CE) by inhibition of non-canonical Wnt signaling and defects in dorsoventral patterning by inhibition of Tolloid-mediated proteolysis of the BMP inhibitor Chordin. From 25 hours post fertilization (hpf) to 3 days post fertilization (dpf), both overexpression and knockdown of Sfrp5 decrease the size of the endoderm, significantly reducing liver cell number. At 3 dpf, insulin-positive endodermal cells fail to coalesce into a single pancreatic islet. We show that Sfrp5 inhibits both canonical and non-canonical Wnt signaling during embryonic and endodermal development, resulting in endodermal abnormalities.  相似文献   

13.
Little is known about the mechanism by which embryonic liver, lung, and pancreas progenitor cells emerge from the endodermal epithelium to initiate organogenesis. Understanding this process and its genetic control provides insight into ontogeny, developmental abnormalities, and tissue regeneration. We find that shortly after hepatic endoderm cells are specified, they undergo a transition from a columnar, gut morphology to a pseudostratified morphology, with concomitant "interkinetic nuclear migration" (INM) during cell division. INM is a hallmark of pseudostratified epithelia and the process used by neural progenitors to emerge from the neural epithelium. We find that the transition of the hepatic endoderm, but not the neural epithelium, to a pseudostratified epithelium is dependent upon the cell-autonomous activity of the homeobox gene Hex. In the absence of Hex, hepatic endoderm cells survive but maintain a columnar, simple epithelial phenotype and ectopically express Shh and other genes characteristic of the midgut epithelium. Thus, Hex promotes endoderm organogenesis by promoting the transition to a pseudostratified epithelium, which in turn allows hepatoblasts to emerge into the stromal environment and continue differentiating.  相似文献   

14.
The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2-4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification.  相似文献   

15.
Mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. Here, we report that a mutation in the zebrafish myosin phosphatase targeting subunit 1 (mypt1) gene causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) and endoderm cells. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a-producing cells with respect to the liver primordium leads to a reduction in hepatoblast proliferation and final abortion of hepatoblasts by apoptosis, causing the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish.  相似文献   

16.
The endoderm emerges as an epithelial sheet that covers the surface of the developing murine embryo. This tissue will produce the entire gut tube as well as associated digestive and respiratory organs including the thyroid, thymus, lung, liver, and pancreas. The emergence of each endodermal organ occurs in a temporally distinct manner that is dependant upon reciprocal inductive interactions between the endoderm and the underlying mesoderm. The emergence of the hepatic endoderm, which occurs using a morphological process termed liver budding, initiates during early somitogenesis in the mouse at approximately 8.25 days post‐coitum (dpc). Explant and transplant studies performed in chicken and mouse have demonstrated that secreted signals from adjacent mesodermal tissues initiate the hepatic gene program from ventral‐fated endoderm. Here, we review the data in support of the roles of members of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and Wnt signaling pathways in liver budding and discover that little is known about the precise endogenous signals involved in the molecular and morphological induction of liver budding in the mouse. J. Cell. Physiol. 226: 1727–1731, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
The vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo. We find that explants of late gastrula anterior lateral endoderm plus mesoderm, which have been used extensively for studies relating to heart development, also produce albumin-expressing hepatoblasts. Expression of Hex, the earliest known molecular marker for the hepatogenic endoderm, and albumin, indicative of early committed hepatoblasts, requires both autocrine Bmp signaling and a specific paracrine signal from the cardiogenic (anterior lateral) mesoderm. Endodermal expression of Fox2a, in contrast, requires the mesoderm but is independent of Bmp signaling. In vivo induction assays show that the ability of BMP2 to activate Hex expression in the endoderm is restricted to a region that is only slightly larger than the endogenous domain of Hex expression. Although Fgfs can substitute for the cardiogenic mesoderm to support the expression of Hex and albumin in the endoderm, several Fgf genes are expressed in the anterior lateral endoderm but an Fgf expressed predominantly in the mesoderm was not identified. Studies also showed that Fgf gene expression in the endoderm does not require a signal from the mesoderm. Mechanisms regulating endodermal signaling pathways activated by Fgfs may therefore be more complex than previously appreciated.  相似文献   

19.
The cellular and molecular mechanisms that regulate endoderm development in vertebrates have only recently begun to be explored. Here we show that the zebrafish locus casanova plays an early and essential role in this process. casanova mutants lack a gut tube and do not express any molecular markers of endoderm differentiation. The early endodermal expression of genes such as axial, gata5, and fkd2 does not initiate in casanova mutants, indicating that the endoderm is defective from the onset of gastrulation. Mosaic analysis demonstrates that casanova functions cell autonomously within the endodermal progenitors. We also report the isolation of a zebrafish homologue of Mixer, a gene important for early endoderm formation in Xenopus. casanova does not encode zebrafish Mixer, and mixer expression is normal in casanova mutants, indicating that casanova acts downstream of, or parallel to, mixer to promote endoderm formation. We further find that the forerunner cells, a specialized group of noninvoluting dorsal mesendodermal cells, do not form in casanova mutants. Studies of casanova mutants do not support an important role for the forerunner cells in either dorsal axis or tail development, as has been previously proposed. In addition, although different populations of mesodermal precursors are generated normally in casanova mutants, morphogenetic defects in the heart, vasculature, blood, and kidney are apparent, suggesting a possible role for the endoderm in morphogenesis of these organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号