首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song MG  Li Y  Kiledjian M 《Molecular cell》2010,40(3):423-432
Regulation of RNA degradation plays an important role in the control of gene expression. One mechanism of eukaryotic mRNA decay proceeds through an initial deadenylation followed by 5' end decapping and exonucleolytic decay. Dcp2 is currently believed to be the only cytoplasmic decapping enzyme responsible for decapping of all mRNAs. Here we report that Dcp2 protein modestly contributes to bulk mRNA decay and surprisingly is not detectable in a subset of mouse and human tissues. Consistent with these findings, a hypomorphic knockout of Dcp2 had no adverse consequences in mice. In contrast, the previously reported Xenopus nucleolar decapping enzyme, Nudt16, is an ubiquitous cytoplasmic decapping enzyme in mammalian cells. Like Dcp2, Nudt16 also regulates the stability of a subset of mRNAs including a member of the motin family of proteins involved in angiogenesis, Angiomotin-like 2. These data demonstrate mammalian cells possess multiple mRNA decapping enzymes, including Nudt16 to regulate mRNA turnover.  相似文献   

2.
RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of the Nudix hydrolase family, we set out to determine whether other members of this family of proteins also contain intrinsic RNA decapping activity. Here we demonstrate that six additional mouse Nudix proteins—Nudt2, Nudt3, Nudt12, Nudt15, Nudt17, and Nudt19—have varying degrees of decapping activity in vitro on both monomethylated and unmethylated capped RNAs. The decapping products from Nudt17 and Nudt19 were analogous to Dcp2 and predominantly generated m7GDP, while cleavage by Nudt2, Nudt3, Nudt12, and Nudt15 was more pleiotropic and generated both m7GMP and m7GDP. Interestingly, all six Nudix proteins as well as both Dcp2 and Nudt16 could hydrolyze the cap of an unmethylated capped RNA, indicating that decapping enzymes may be less constrained for the presence of the methyl moiety. Investigation of Saccharomyces cerevisiae Nudix proteins revealed that the yeast homolog of Nudt3, Ddp1p, also possesses decapping activity in vitro. Moreover, the bacterial Nudix pyrophosphohydrolase RppH displayed RNA decapping activity and released m7GDP product comparable to Dcp2, indicating that decapping is an evolutionarily conserved activity that preceded mammalian cap formation. These findings demonstrate that multiple Nudix family hydrolases may function in mRNA decapping and mRNA stability.  相似文献   

3.
Lejeune F  Li X  Maquat LE 《Molecular cell》2003,12(3):675-687
Nonsense-mediated mRNA decay (NMD) is a mechanism by which cells recognize and degrade mRNAs that prematurely terminate translation. To date, the polarity and enzymology of NMD in mammalian cells is unknown. We show here that downregulating the Dcp2 decapping protein or the PM/Scl100 component of the exosome (1) significantly increases the abundance of steady-state nonsense-containing but not nonsense-free mRNAs, and (2) significantly slows the decay rate of transiently induced nonsense-containing but not nonsense-free mRNA. Downregulating poly(A) ribonuclease (PARN) also increases the abundance of nonsense-containing mRNAs. Furthermore, NMD factors Upf1, Upf2, and Upf3X coimmunopurify with the decapping enzyme Dcp2, the putative 5'-->3' exonuclease Rat1, the proven 5'-->3' exonuclease Xrn1, exosomal components PM/Scl100, Rrp4, and Rrp41, and PARN. From these and other data, we conclude that NMD in mammalian cells degrades mRNAs from both 5' and 3' ends by recruiting decapping and 5'-->3' exonuclease activities as well as deadenylating and 3'-->5' exonuclease activities.  相似文献   

4.
5.
6.
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5′ 7-methyl guanosine (m7G) cap in the cytoplasm to allow for 5′-to-3′ exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

7.
8.
9.
10.
11.
Dunckley T  Tucker M  Parker R 《Genetics》2001,157(1):27-37
The major mRNA decay pathway in Saccharomyces cerevisiae occurs through deadenylation, decapping, and 5' to 3' degradation of the mRNA. Decapping is a critical control point in this decay pathway. Two proteins, Dcp1p and Dcp2p, are required for mRNA decapping in vivo and for the production of active decapping enzyme. To understand the relationship between Dcp1p and Dcp2p, a combination of both genetic and biochemical approaches were used. First, we demonstrated that when Dcp1p is biochemically separated from Dcp2p, Dcp1p was active for decapping. This observation confirmed that Dcp1p is the decapping enzyme and indicated that Dcp2p functions to allow the production of active Dcp1p. We also identified two related proteins that stimulate decapping, Edc1p and Edc2p (Enhancer of mRNA DeCapping). Overexpression of the EDC1 and EDC2 genes suppressed conditional alleles of dcp1 and dcp2, respectively. Moreover, when mRNA decapping was compromised, deletion of the EDC1 and/or EDC2 genes caused significant mRNA decay defects. The Edc1p also co-immunoprecipitated with Dcp1p and Dcp2p. These results indicated that Edc1p and Edc2p interact with the decapping proteins and function to enhance the decapping rate.  相似文献   

12.
13.
We have cloned cDNAs for the human homologues of the yeast Dcp1 and Dcp2 factors involved in the major (5'-3') and NMD mRNA decay pathways. While yeast Dcp1 has been reported to be the decapping enzyme, we show that recombinant human Dcp2 (hDcp2) is enzymatically active. Dcp2 activity appears evolutionarily conserved. Mutational and biochemical analyses indicate that the hDcp2 MutT/Nudix domain mediates this activity. hDcp2 generates m7GDP and 5'-phosphorylated mRNAs that are 5'-3' exonuclease substrates. Corresponding decay intermediates are present in human cells showing the relevance of this activity. hDcp1 and hDcp2 co-localize in cell cytoplasm, consistent with a role in mRNA decay. Interestingly, these two proteins show a non-uniform distribution, accumulating in specific foci.  相似文献   

14.
Decapping is a central step in eukaryotic mRNA turnover. Recent studies have identified several factors involved in catalysis and regulation of decapping. These include the following: an mRNA decapping complex containing the proteins Dcp1 and Dcp2; a nucleolar decapping enzyme, X29, involved in the degradation of U8 snoRNA and perhaps of other capped nuclear RNAs; and a decapping 'scavenger' enzyme, DcpS, that hydrolyzes the cap structure resulting from complete 3'-to-5' degradation of mRNAs by the exosome. Several proteins that stimulate mRNA decapping by the Dcp1:Dcp2 complex co-localize with Dcp1 and Dcp2, together with Xrn1, a 5'-to-3' exonuclease, to structures in the cytoplasm called processing bodies. Recent evidence suggests that the processing bodies may constitute specialized cellular compartments of mRNA turnover, which suggests that mRNA and protein localization may be integral to mRNA decay.  相似文献   

15.
mRNA decapping is a critical step in the control of mRNA stability and gene expression and is carried out by the Dcp2 decapping enzyme. Dcp2 is an RNA binding protein that must bind RNA in order to recognize the cap for hydrolysis. We demonstrate that human Dcp2 (hDcp2) preferentially binds to a subset of mRNAs and identify sequences at the 5' terminus of the mRNA encoding Rrp41, a core subunit component of the RNA exosome, as a specific hDcp2 substrate. A 60-nucleotide element at the 5' end of Rrp41 mRNA was identified and shown to confer more efficient decapping on a heterologous RNA both in vitro and upon transfection into cells. Moreover, reduction of hDcp2 protein levels in cells resulted in a selective stabilization of the Rrp41 mRNA, confirming it as a downstream target of hDcp2 regulation. These findings demonstrate that hDcp2 can specifically bind to and regulate the stability of a subset of mRNAs, and its intriguing regulation of the 3'-to-5' exonuclease exosome subunit suggests a potential interplay between 5'-end mRNA decapping and 3'-end mRNA decay.  相似文献   

16.
mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs.  相似文献   

17.
18.
Analysis of recombinant yeast decapping enzyme   总被引:11,自引:2,他引:9       下载免费PDF全文
A critical step in the turnover of yeast mRNAs is decapping. Two yeast proteins, Dcp1p and Dcp2p, are absolutely required for decapping, although their precise roles in the decapping reaction have not been established. To determine the function of both Dcp1p and Dcp2p in decapping, we purified recombinant versions of these proteins from Escherichia coli and examined their properties. These experiments demonstrate that copurification of Dcp1p and Dcp2p yields active decapping enzyme under a variety of conditions. Moreover, Dcp2p alone can have decapping activity under some biochemical conditions. This suggests that Dcp2p can be a catalytic subunit of the decapping complex, and Dcp1p may function to enhance Dcp2p activity, or as an additional active subunit. In addition, recombinant Dcp1p/Dcp2p prefers long mRNA substrates and is sensitive to inhibition by sequestration of the 5' end but not the 3' end of the substrate. This suggests that Dcp1p/Dcp2p contains an additional RNA-binding site spatially distinct from the active site. Finally, using two RNA-binding proteins that enhance decapping in vivo (Edc1p and Edc2p), we can reconstitute the activation of decapping with recombinant proteins. This indicates that the Edc1 and Edc2 proteins act directly on the decapping enzyme.  相似文献   

19.
Jiao X  Wang Z  Kiledjian M 《Molecular cell》2006,24(5):713-722
Two major decapping enzymes are involved in the decay of eukaryotic mRNA, Dcp2 and DcpS. Despite the detection of robust DcpS decapping activity in cell extract, minimal to no decapping is detected from human Dcp2 (hDcp2) in extract. We now demonstrate that one reason for the lack of detectable hDcp2 activity in extract is due to the presence of inhibitory trans factor(s). Furthermore, we demonstrate that a previously identified testis-specific protein of unknown function implicated in nonspecific X-linked mental retardation, VCX-A, can function as an inhibitor of hDcp2 decapping in vitro and in cells. VCX-A is a noncanonical cap-binding protein that binds to capped RNA but not cap structure lacking an RNA. Its cap association is enhanced by hDcp2 to further augment the ability of VCX-A to inhibit decapping. Our data demonstrate that VCX-A can regulate mRNA stability and that it is an example of a tissue-specific decapping regulator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号