首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6.  相似文献   

2.
Farnesol and the related isoprenoids, geranylgeraniol, geranylgeranyl pyrophosphate, and farnesyl pyrophosphate, are produced in the endoplasmic reticulum of hepatocytes in mammals, and each serve important biological functions. Of these compounds, only farnesol was shown to significantly inhibit rabbit liver microsomal cytochrome P450 enzymes. The observed inhibition appeared to be reversible, and was not strictly competitive, but rather mixed in nature. Of the activities examined, ethoxycoumarin de-ethylase and diclofenac-4-hydroxylase activities were most sensitive to farnesol, with K(I) and K(I)' values between 11 and 40 microM. Caffeine-8-hydroxylation and taxol-6-hydroxylation were not inhibited at all by farnesol. Farnesol appeared to be a P450 substrate, as well as an inhibitor, as indicated by the NADPH-dependent decrease in farnesol concentration in microsomal incubations, and the metabolism was inhibited by CO, which pointed to the involvement of P450 isozymes.  相似文献   

3.
Cytochrome P450 (P450) 7A1 is well known as the cholesterol 7α-hydroxylase, the first enzyme involved in bile acid synthesis from cholesterol. The human enzyme has been reported to have the highest catalytic activity of any mammalian P450. Analyses of individual steps of cholesterol 7α-hydroxylation reaction revealed several characteristics of this reaction: (i) two-step binding of cholesterol to ferric P450, with an apparent K(d) of 0.51 μM, (ii) a rapid reduction rate in the presence of cholesterol (~10 s(-1) for the fast phase), (iii) rapid formation of a ferrous P450-cholesterol-O(2) complex (29 s(-1)), (iv) the lack of a non-competitive kinetic deuterium isotope effect, (v) the lack of a kinetic burst, and (vi) the lack of a deuterium isotope effect when the reaction was initiated with the ferrous P450-cholesterol complex. A minimum kinetic model was developed and is consistent with all of the observed phenomena and the rates of cholesterol 7α-hydroxylation and H(2)O and H(2)O(2) formation. The results indicate that the first electron transfer step, although rapid, becomes rate-limiting in the overall P450 7A1 reaction. This is a different phenomenon compared with other P450s that have much lower rates of catalysis, attributed to the much more efficient substrate oxidation steps in this reaction.  相似文献   

4.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

5.
The electrochemical analysis of cytochrome P450 3A4 catalytic activity has shown that vitamins C, A and E influence reduction of cytochrome P450 3A4. These data suggest a possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome P450 3A4, during complex therapy of patients. These vitamins demonstrate antioxidant properties that lead to the increase of the cathodic current corresponding to heme reduction of this functionally significant hemoprotein. Ascorbic acid (0.028–0.56 mM) stimulated the cathodic peak (an electrochemical signal) of cytochrome P450 3A4. In the presence of diclofenac (Voltaren), a typical substrate of cytochrome P450 3A4, the increase in the catalytic current suggesting electrocatalysis and stimulating action of ascorbic acid was observed. In the presence of vitamins A and E the dose-dependent increase in the catalytic current of cytochrome P450 3A4 was observed in the range of vitamin concentrations from 10 to 100 μM. The maximal increase of 229 ± 20 and 162 ± 10% was observed at 100 μM vitamin A and vitamin E, respectively. In contrast to vitamin A, vitamin E in the presence of the cytochrome P450 inhibitor itraconazole did not increase the catalytic current. The latter implies existence of some substrate properties in vitamin E. The electrochemical approach for the analysis of catalytic activity of cytochrome P450 3A4 and studies of the effect of biologically active compounds on electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (up to 10–15 mol/electrode), to carry out the analysis without involvement of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.  相似文献   

6.
6-Azacholest-4-en-3 beta-ol-7-one (azacholesterol) was shown to be a specific inhibitor of cholesterol 7 alpha-hydroxylase. It inhibited cholesterol hydroxylation by a rat liver microsomal preparation with non-competitive kinetics and a Ki of 4 microM. No evidence was found for a time-dependent inhibition of activity. Azacholesterol did not inhibit acyl-CoA: cholesterol acyltransferase or 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver microsomal preparations, or cholesterol esterification and synthesis in primary cultures of rat hepatocytes. The synthesis of bile acids was inhibited by azacholesterol in these cells in a dose-dependent way. When bile acid synthesis was inhibited by azacholesterol, newly-synthesized cholesterol from exogenous mevalonate was secreted by the hepatocyte cultures into the cell culture medium in several-fold excess over control incubations. No changes in the secretion of cholesteryl ester occurred in the presence of azacholesterol. This observation suggests that newly synthesised cholesterol that has entered the substrate pool for hydroxylation is no longer accessible to the substrate pool for esterification. This is further evidence for the compartmentation of cholesterol metabolism in the hepatocyte.  相似文献   

7.
Elucidation of distinct ligand binding sites for cytochrome P450 3A4   总被引:4,自引:0,他引:4  
Hosea NA  Miller GP  Guengerich FP 《Biochemistry》2000,39(20):5929-5939
Cytochrome P450 (P450) 3A4 is the most abundant human P450 enzyme and has broad selectivity for substrates. The enzyme can show marked catalytic regioselectivity and unusual patterns of homotropic and heterotropic cooperativity, for which several models have been proposed. Spectral titration studies indicated one binding site for the drug indinavir (M(r) 614), a known substrate and inhibitor. Several C-terminal aminated peptides, including the model morphiceptin (YPFP-NH(2)), bind with spectral changes indicative of Fe-NH(2) bonding. The binding of the YPFP-NH(2) N-terminal amine and the influence of C-terminal modification on binding argue that the entire molecule (M(r) 521) fits within P450 3A4. YPFP-NH(2) was not oxidized by P450 3A4 but blocked binding of the substrates testosterone and midazolam, with K(i) values similar to the spectral binding constant (K(s)) for YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of several typical P450 substrates with K(i) values 10-fold greater than the K(s) for binding YPFP-NH(2) and its K(i) for inhibiting substrate binding. The n values for cooperativity of these oxidations were not altered by YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of midazolam at two different positions (1'- and 4-) with 20-fold different K(i) values. The differences in the K(i) values for blocking the binding to ferric P450 3A4 and the oxidation of several substrates may be attributed to weaker binding of YPFP-NH(2) to ferrous P450 3A4 than to the ferric form. The ferrous protein can be considered a distinct form of the enzyme in binding and catalysis because many substrates (but not YPFP-NH(2)) facilitate reduction of the ferric to ferrous enzyme. Our results with these peptides are considered in the context of several proposed models. A P450 3A4 model based on these peptide studies contains at least two and probably three distinct ligand sites, with testosterone and alpha-naphthoflavone occupying distinct sites. Midazolam appears to be able to bind to P450 3A4 in two modes, one corresponding to the testosterone binding mode and one postulated to reflect binding in a third site, distinct from both testosterone and alpha-naphthoflavone. The work with indinavir and YPFP-NH(2) also argues that room should be present in P450 3A4 to bind more than one smaller ligand in the "testosterone" site, although no direct evidence for such binding exists. Although this work with peptides provides evidence for the existence of multiple ligand binding sites, the results cannot be used to indicate their juxtaposition, which may vary through the catalytic cycle.  相似文献   

8.
J Iglesias  G F Gibbons 《Steroids》1989,53(3-5):311-328
The effects of ketoconazole, an inhibitor of cytochrome P-450, on the metabolism of the cholesterol precursors lanosterol, dihydrolanosterol, lanost-8-en-3 beta,32-diol, and 3 beta-hydroxylanost-8-en-32-al were investigated in subcellular fractions of rat liver and in rat hepatocytes in culture. At low (1-2 microM) concentrations of the drug, the oxidative demethylation of lanosterol was inhibited by about 70% in the subcellular fractions but there was no effect on the metabolism of the 3 beta, 32-diol or the 32-aldehyde. Higher drug concentrations (10-20 microM) were required to inhibit the oxidative metabolism of these cholesterol precursors. Similar results were obtained during longer-term incubations using hepatocytes in culture medium, but higher concentrations of ketoconazole were required to effect the same degree of inhibition of each precursor. In the subcellular fractions, dihydrolanosterol, the 3 beta,32-diol and the 32-aldehyde were each metabolized to more polar sterols, in addition to cholesterol. Ketoconazole also inhibited the formation of these polar substances.  相似文献   

9.
Isolated rat hepatocytes converted mevalonolactone into sterol intermediates and fatty acids 6- to 8-fold faster than mevalonate salt at concentrations less than 6 X 10(-4) M. Incubation of hepatocytes for 3 h normally results in induction of 3-hydroxy-3-methylglutaryl-CoA reductase. This increase in enzyme activity was inhibited by mevalonolactone and by mevalonate salt; at each concentration between 6 X 10(-4) M and 6 X 10(-8) M the lactone was a more effective inhibitor than the salt. The increase in enzyme activity was completely prevented by 6 X 10(-4) M lactone, and at this concentration the cells synthesized from the lactone an amount of sterol per hour which approximated that leavingthe cells in the same period. Administration of mevalonolactone to intact rats resulted in a dose-dependent inhibition of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity. At the highest dose (400 mg of (RS)-mevalonolactone/200 g of rat) enzyme activities declined 85% within 45 min and were still suppressed below normals after 28 h. Mevalonolactone treatment resulted in increases in liver cholesterol content and in the cholesterol ester concentration of liver microsomes. The results demonstrate that the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase can be controlled by the rate of endogenous sterol synthesis both in vitro and in vivo.  相似文献   

10.
Six substituted alkoxyphenoxazones (resorufins) and four inhibitors of P450‐dependent mixed‐function oxygenases (MFO) were used to probe the breadth and extent of P450 metabolism induced by pretreatment with five xenobiotic chemicals in liver microsomes of the American alligator, Alligator mississippiensis. Phenobarbital (PB), 3‐methylcholanthrene (3MC), and PB–3MC co‐pretreatment elicited major induction of alligator MFO activity measured by alkoxyresorufin O‐dealkylation (AROD). The induced levels of activities observed with appropriate substrate, 7‐ethoxy, 7‐methoxy, 2‐phenylbenzyloxy, 7‐pentoxy, or 7‐benzyloxyresorufin (EROD, MROD, PBROD, PROD and BROD, respectively), were 10 to 100 times lower in alligator as compared to rat. The exception was a higher level of isopropoxyresorufin O‐dealkylation (IPROD) in alligator. The induction regimes used in alligator and rat revealed marked differences in substrate preference, discrimination factors (DF) for various inducible P450 isoforms. EROD, a classic indicator of CYP1A activity in rat, had a low DF in alligator. MROD was the best discriminator in alligator of CYP1A‐type induction. In contrast to rats, pretreatment of alligators with Aroclor 1254, 2,2′,4,4′ tetrachlorobiphenyl, and clofibrate caused minor alterations in AROD relative to untreated controls. The inhibitors, α‐napthaflavone, 1‐ethynylpyrene, SKF 525A, and 9‐ethynylphenanthrene, inhibited AROD activity of the expected P450 isoform. For example, 10 μM α‐napthaflavone inhibited liver microsomal EROD catalyzed by 3MC‐inducible isoforms from alligator by 90% and from rat by 97%. Similarly, 10 μM SKF 525A inhibited PROD catalyzed by PB‐inducible isoforms by 63% and 79% in alligator and rat liver microsomes, respectively. To the best of our knowledge, the present studies are the first to show PB induction of P450 activities typical of the mammalian CYP2 family and their inhibition with classical inhibitors in alligator liver. While our data indicate metabolism of P450 substrates with preferences to certain isoforms, it remains to be established which isoforms exert catalytic function in alligator and whether these are homologues or orthologues of mammalian isoforms. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 17–27, 1999  相似文献   

11.
7-Ketocholesterol is a bioactive sterol, a potent competitive inhibitor of cytochrome P450 7A1, and toxic in liver cells. Multiple origins of this compound have been identified, with cholesterol being the presumed precursor. Although routes for formation of the 7-keto compound from cholesterol have been established, we found that 7-dehydrocholesterol (the immediate precursor of cholesterol) is oxidized by P450 7A1 to 7-ketocholesterol (k(cat)/K(m) = 3 × 10(4) m(-1) s(-1)). P450 7A1 converted lathosterol (Δ(5)-dihydro-7-dehydrocholesterol) to a mixture of the 7-keto and 7α,8α-epoxide products (~1:2 ratio), with the epoxide not rearranging to the ketone. The oxidation of 7-dehydrocholesterol occured with predominant formation of 7-ketocholesterol and with the 7α,8α-epoxide as only a minor product; the synthesized epoxide was stable in the presence of P450 7A1. The mechanism of 7-dehydrocholesterol oxidation to 7-ketocholesterol is proposed to involve a Fe(III)-O-C-C(+) intermediate and a 7,8-hydride shift or an alternative closing to yield the epoxide (Liebler, D. C., and Guengerich, F. P. (1983) Biochemistry 22, 5482-5489). Accordingly, reaction of P450 7A1 with 7-[(2)H(1)]dehydrocholesterol yielded complete migration of deuterium in the product 7-ketocholesterol. The finding that 7-dehydrocholesterol is a precursor of 7-ketocholesterol has relevance to an inborn error of metabolism known as Smith-Lemli-Opitz syndrome (SLOS) caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase, the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol in tissues and fluids of SLOS patients. Our findings suggest that 7-ketocholesterol levels may also be elevated in SLOS tissue and fluids as a result of P450 7A1 oxidation of 7-dehydrocholesterol.  相似文献   

12.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6α-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 μM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6α-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6β-hydroxylation (r2=0.9). There was also a strong correlation between 6α-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6β-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6α-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 μM concentration. Other inhibitors, such as α-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6α-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 μM). This might give an explanation for the limited formation of 6α-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

13.
2-Ethynylnaphthalene (2EN) had previously been demonstrated to be a mechanism-based inactivator of rat cytochrome P450 (P450) 1A2 [Hammons, G.J., Alworth, W.L., Hopkins, N.E., Guengerich, F. P., & Kadlubar, F. F. (1989) Chem. Res. Toxicol. 2, 367-374]. In this work 2EN was also demonstrated to be a useful inactivator of rabbit P450 1A2 (k(inactivation) 0.094 min-1, K(i) 11 microM) but it did not inactivate human P450 1A2, although the sequences of the three proteins are approximately 80% identical. Rat and rabbit P450 1A2 were modified by incubation with NADPH-P450 reductase, NADPH, and [3H]2EN to levels of 0.35 and 0.47 nmol of adduct (nmol of P450)-1, respectively. In each case only a single tryptic peptide was labeled; recovery of labeled peptides was low under the acidic HPLC conditions. The rabbit P450 1A2 peptide FQELMAAVGR (positions 175-184) and the rat P450 1A2 peptide L(S)QQYGDVLQIR (positions 67-78) were identified. 4-Azidobiphenyl (4-N3BP) was developed as a photoaffinity label for P-450 1A2 proteins because of its similarity to 4-aminobiphenyl, a known substrate for the enzymes. 4-N3BP was shown to be photolyzed with 350-nm light and radioactive label could be incorporated into rat P450 1A2. Labeling of the protein was found to be saturable with increasing concentrations of 4-N3BP and up to 0.59 nmol of label could be incorporated (nmol P450 1A2)-1. The substrate 4-aminobiphenyl and the competitive inhibitor 7,8-benzoflavone blocked photolabeling of P450 1A2 with 4-N3BP, and 4-N3BP inhibited N-hydroxylation of 4-aminobiphenyl by P450 1A2 in the usual enzyme assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The determinants of reduction of the dye MTT (3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in rat hepatocytes have been investigated. NADH, NADPH, and succinate were substrates for MTT reduction in rat liver homogenate, activity being greatest with NADH and least with succinate. Similar results were obtained with submitochondrial particles isolated from rat liver. NAD(P)Hdependent reduction of MTT was also detected in rat liver microsomes and cytosol. Rotenone, at a concentration that inhibited NAD(P)H-dependent MTT reduction in submitochondrial particles, did not inhibit MTT reduction in rat hepatocytes. Malonate, at a concentration that inhibited succinate-dependent MTT reduction in liver homogenate, did not inhibit MTT reduction in rat hepatocytes. Incubation of rat hepatocytes with ethanol or lactate (increase NADH levels), dicoumarol (inhibitor of DT-diaphorase), aminopyrine or hexobarbitone (substrates for the NADPH-requiring cytochrome P450-dependent microsomal monooxygenase) led to significant increases in the level of cellular MTT reduction. From these data, it is concluded that extramitochondrial NAD(P)H is the principal reductant for MTT reduction in rat hepatocytes, with mitochondrial dehydrogenase activity being only a minor contributor. It is also possible that cellular generation of superoxide (as might be expected on redox cycling of endogenous quinones following inhibition of DT diaphorase by dicoumarol) may be another source of MTT reduction. Caution should be exercised in ascribing an alteration in the level of cellular MTT reduction to a change in mitochondrial performance in the absence of corroborating evidence.  相似文献   

15.
The effect of 3-methoxybenzidine on the conversion of cholesterol to pregnenolone was investigated using a reconstituted enzyme system comprised of adrenodoxin, adrenodoxin reductase and cytochrome P-450scc purified from bovine adrenal cortex. Under conditions where the cytochrome P-450scc concentration was rate-limiting, 3-methoxybenzidine was found to be a potent inhibitor, causing 50% inhibition at 7 μM when using a cholesterol concentration of 70 μM. The parent compound, benzidine, was much less effective, exhibiting an Icn value of approximately 40 μM. No effect of 3-methoxybenzidine was observed on the adrenodoxin reductase and adrenodoxin-catalyzed reduction of cytochrome c by NADPH, and it is concluded that 3-methoxybenzidine acts on cytochrome P-450scc in inhibiting cholesterol side chain cleavage.  相似文献   

16.
We demonstrated that naringenin (NRG), the aglycon form of naringin present in grapefruit juice inhibits in vitro the metabolism of simvastatin (SV), a HMG-CoA reductase inhibitor. SV undergoes an important first pass metabolism and this is thought to be partly responsible for its low bioavailability after oral administration. SV is a prodrug that requires metabolic activation through hydrolysis by esterases. In addition, SV is a substrate for cytochrome P450 enzymes. NRG, a potent inhibitor of cytochrome P450 enzymes, interferes with the isoenzymes of cytochrome P450 involved in the hepatic metabolism of SV. NRG inhibits the metabolism of SV in rat hepatocytes (the intrinsic clearance of SV decreases from 26.2 microl/min/10(6) cells in absence of NRG to 4.15 microl/min/10(6) cells in presence of 50 microM NRG). This inhibition is more pronounced in hepatocytes (Ki value approximately 5 microM) than in liver microsomes (Ki approximately 23 microM and approximately 30 microM in human and rat liver microsomes respectively). Therefore, the hepatocytes seem to be the best approach for in vitro interaction study between SV and NRG ; and this should be taken into account in the in vitro/in vivo extrapolation. If this interaction were confirmed in man, the doses of SV should be reduced when co-administered with grapefruit juice because of increased bioavailability of SV.  相似文献   

17.
A highly polymethylated flavone that effectively inhibited cytochrome P450s (CYPs) 1A2 and 3A4 (IC(50) = 2.41 and 1.71 μM) in vitro was isolated from thyme leaves (Thymus saturoides) purchased from a Japanese market. Its structure was spectroscopically identified as 4',5-dihydroxy-3',6,7,8-tetramethoxy flavone (8-methoxycirsilineol, 1). This is the first report describing a strong inhibitor of CYP1A2 and 3A4 isolated from Thymus saturoides.  相似文献   

18.
Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region.  相似文献   

19.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

20.
Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent Km and Vmax of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC50 and the (Ki) values were 1.2 μM (0.5 μM) and 1.3 μM (1.9 μM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC50: 1.3 μM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号