首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have purified a membrane bound ceramidase 22,300-fold to apparent homogeneity. The purification scheme included Triton X-100 extraction of membranes followed by Q-Sepharose, blue Sepharose, phenyl-Sepharose, and MonoS column chromatography. The purified enzyme showed an apparent molecular mass of 90 kDa as estimated by SDS-polyacrylamide gel electrophoresis under reducing conditions and 95 kDa by chromatography on Superose 12. Using C(16)-ceramide as substrate, the enzyme showed a broad pH optimum in the neutral to alkaline range. A mixed micelle assay was developed, and using Triton X-100/ceramide mixed micelles, the enzyme exhibited classical Michaelis-Menten kinetics, with a K(m) of 1.29 mol % and a V(max) of 4.4 micromol/min/mg. When dihydroceramide was used as substrate, these values were 3.84 mol % and 1.2 micromol/min/mg, respectively, indicating that the enzyme hydrolyzes ceramides preferentially. The activity of the purified ceramidase did not require cations, and it was inhibited by reducing agents. Phosphatidylcholine and sphingomyelin were without effect on the enzyme activity, whereas phosphatidic acid and phosphatidylserine stimulated the activity 3-fold. Sphingosine acted as a competitive inhibitor with an IC(50) of 5-10 microM. These results indicate that the purified enzyme is a novel ceramidase.  相似文献   

2.
Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.  相似文献   

3.
Previously, we reported two types of neutral ceramidase in mice, one solubilized by freeze-thawing and one not. The former was purified as a 94-kDa protein from mouse liver, and cloned (Tani, M., Okino, N., Mori, K., Tanigawa, T., Izu, H., and Ito, M. (2000) J. Biol. Chem. 275, 11229--11234). In this paper, we describe the purification, molecular cloning, and subcellular distribution of a 112-kDa membrane-bound neutral ceramidase of rat kidney, which was completely insoluble by freeze-thawing. The open reading frame of the enzyme encoded a polypeptide of 761 amino acids having nine putative N-glycosylation sites and one possible transmembrane domain. In the ceramidase overexpressing HEK293 cells, 133-kDa (Golgi-form) and 113-kDa (endoplasmic reticulum-form) Myc-tagged ceramidases were detected, whereas these two proteins were converted to a 87-kDa protein concomitantly with loss of activity when expressed in the presence of tunicamycin, indicating that the N-glycosylation process is indispensable for the expression of the enzyme activity. Immunohistochemical analysis clearly showed that the ceramidase was mainly localized at the apical membrane of proximal tubules, distal tubules, and collecting ducts in rat kidney, while in liver the enzyme was distributed with endosome-like organelles in hepatocytes. Interestingly, the kidney ceramidase was found to be enriched in the raft microdomains with cholesterol and GM1 ganglioside.  相似文献   

4.
The magnesium-dependent, plasma membrane-associated neutral sphingomyelinase (N-SMase) catalyzes hydrolysis of membrane sphingomyelin to form ceramide, a lipid signaling molecule implied in intracellular signaling. We report here the biochemical purification to apparent homogeneity of N-SMase from bovine brain. Proteins from Nonidet P-40 extracts of brain membranes were subjected to four purification steps yielding a N-SMase preparation that exhibited a specific enzymatic activity 23,330-fold increased over the brain homogenate. When analyzed by two-dimensional gel electrophoresis, the purified enzyme presented as two major protein species of 46 and 97 kDa, respectively. Matrix-assisted laser desorption/ionization-mass spectrometry analysis of tryptic peptides revealed at least partial identity of these two proteins. Amino acid sequencing of tryptic peptides showed no apparent homologies of bovine N-SMase to any known protein. Peptide-specific antibodies recognized a single 97-kDa protein in Western blot analysis of cell lysates. The purified enzyme displayed a K(m) of 40 microM for sphingomyelin with an optimal activity at pH 7-8. Bovine brain N-SMase was strictly dependent on Mg(2+), whereas Zn(2+) and Ca(2+) proved inhibitory. The highly purified bovine N-SMase was effectively blocked by glutathione and scyphostatin. Scyphostatin proved to be a potent inhibitor of N-SMase with 95% inhibition observed at 20 microM scyphostatin. The results of this study define a N-SMase that fulfills the biochemical and functional criteria characteristic of the tumor necrosis factor-responsive membrane-bound N-SMase.  相似文献   

5.
A peptidase inactivating neurotensin at the Pro10-Tyr11 peptidyl bond, leading to the biologically inactive fragments neurotensin1–10 and neurotensin11–13 was purified from rat brain homogenate. The peptidase was characterized as a 70 kDa monomer and could be classified as a metaliopeptidase with respect to its sensitivity to o-phenanthroline, EDTA and divalent cations. The enzyme was also strongly inhibited by dithiothreitol but appeared totally insensitive to thiol-blocking agents, acidic and serine protease inhibitors. Experiments performed with a series of highly specific peptidase inhibitors clearly indicated that the peptidase was a novel enzyme distinct from previously purified cerebral peptidases. The enzyme displayed a rather high affinity for neurotensin (Km = 2.3 itM). Studies on its specificity indicated that: (i) neurotensin9–13 was the shortest neurotensin fragment with full inhibitory potency of [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule progressively led to inactive analogs; (ii) the peptidase exhibited a strong stereospecificity towards the residues in positions 8, 9 and 11. By contrast, neither introduction of a steric hindrance in position 11 nor amidation of the C-terminal end of the neurotensin molecule affected the ability of the corresponding analog to inhibit [3H]neurotensin degradation; (iii) Pro-Phe was the most potent dipeptide to compete for [3H]neurotensin degradation; (iv) the peptidase could not be described as an exclusive “neurotensinase” activity since, in addition to the neurotensin natural analogs (neuromedin N and xenopsin), non related natural peptides such as angiotensins I and II, dynorphins 1–8 and 1–13, atriopeptin III and bradykinin potently inhibited [3H]neurotensin degradation. Most of these peptides behaved as substrates for the enzyme.  相似文献   

6.
A novel substance P-degrading endopeptidase has been solubilized with Brij 35 from a membrane fraction of rat brain and purified by a procedure involving DEAE-cellulose chromatography, hydroxyapatite chromatography, Sephadex G-100 gel filtration, and Mono-Q HPLC. The activity of the degrading enzyme was monitored by measuring the disappearance of substance P by means of a bioassay and HPLC. SDS-polyacrylamide gel electrophoresis under reducing conditions of the enzyme gave a single band corresponding to a molecular weight of 58,000. The molecular weight of the enzyme was estimated to be 55,000 by gel filtration and the optimum pH for its activity was 7.5.. The purified enzyme cleaved substance P at three bonds, Pro4-Gln5, Gln5-Gln6, and Gln6-Phe7, in the ratio of 2:2:3. EDTA, o-phenanthroline, and p-chloromercuribenzenesulfonic acid strongly inhibited the enzyme, while diisopropyl fluorophosphate, E-64, Z-Gly-ProCH2Cl, phosphoramidon, and captopril had little or no inhibitory effect on it. The cleavage of substance P by the rat brain synaptic membrane was also analyzed under the conditions with or without these inhibitors. The inhibitor-susceptibility of the cleavage sites suggests that the present enzyme, together with endopeptidase-24.11, is involved in the degradation of substance P in the synaptic region.  相似文献   

7.
A lysophospholipase D (lysoPLD) was purified to apparent homogeneity from rat brain nuclear fractions using 1-[(14)C]palmitoyl-glycerophosphorylcholine as a substrate. The abundance of autotaxin (ATX), a secretory lysoPLD, was also estimated for each fraction. The nuclear fraction had relatively high levels of lysoPLD activity but weak immunoreactivity with an anti-ATX antibody. LysoPLD activity was further purified 5550-fold by sequential chromatography. The final preparation migrated as a single band with a molecular weight of 35,000. Anti-ATX antibodies did not cross-react with the purified enzyme. Moreover, enzyme activity was highest at pH 7.0-7.5 and requires Mg(2+). The Km and Vmax values for 1-palmitoyl-glycerophosphorylcholine were 176 microM and 0.3 micromol/min/mg, respectively. The purified enzyme hydrolyzed saturated forms of LPC more robustly than unsaturated forms. The enzyme could hydrolyze platelet-activating factor (PAF) to the same extent as 16:0-LPC, and showed a higher activity toward lysoPAF (1-O-hexadecyl-2-lyso-glycerophosphorylcholine). These results suggested that the lysoPLD purified from rat brain nuclear fractions in this work is a novel enzyme that hydrolyzes lysoPAF, PAF, and LPC to liberate choline.  相似文献   

8.
We report here the molecular cloning and characterization of the Drosophila neutral ceramidase (CDase). Using the BLAST program, a neutral CDase homologue (AE003774) was found in the Drosophila GenBank and cloned from a cDNA library of Drosophila imaginal discs. The open reading frame of 2,112 nucleotides encoded a polypeptide of 704 amino acids having five putative N-glycosylation sites and a putative signal sequence composed of 23 residues. When a His-tagged CDase was overexpressed in D. melanogaster Schneider's line 2 (S2) cells, the enzyme was continuously secreted into the medium through a vesicular transport system. Treatment of the secretory 86.3-kDa CDase with glycopeptidase F resulted in the generation of a 79.3-kDa protein, indicating that the enzyme is actually glycosylated with N-glycans. The enzyme hydrolyzed various N-acylsphingosines but not galactosylceramide, GM1a or sphingomyelin, and exhibited a peak of activity at pH 6.5-7.5, and thus was classified as a neutral CDase. RNAi for the enzyme remarkably decreased the CDase activity in a cell lysate as well as a culture supernatant of S2 cells mostly at neutral pH, indicating that both activities were derived from the same gene product.  相似文献   

9.
Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.  相似文献   

10.
The identification of three forms of phenol sulfotransferase (PST) in human brain and the subsequent purification and kinetic characterization of a phenol-sulfating form of the enzyme are described. Two forms of PST which were capable of conjugating phenol and a third form which sulfated dopamine were resolved from one another using DEAE-cellulose chromatography. One of the phenol-sulfating forms (P1-PST) was subsequently purified on Affi-Gel blue and Sephacryl S-200, giving a final purification of almost 390-fold, with an overall yield of approximately 5%. The purified enzyme was sensitive to NaCl and showed an optimum for phenol conjugation at pH 8.5. Kinetic analysis demonstrated that sulfation by P1-PST proceeds via a sequential ordered, bi-substrate reaction mechanism, where 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is the leading substrate. The true Km and Kia values for PAPS were both 0.35 microM, while the true Km value for phenol was 2.8 microM.  相似文献   

11.
The kinetic and biochemical properties of a purified, monoamine-sulfating form of phenol sulfotransferase (M-PST) from human brain are described. M-PST activity was separated and purified from phenol-sulfating activity by anion-exchange chromatography on DEAE-cellulose and subsequently purified on AffiGel Blue and Sephacryl S-200, routinely giving a final purification of over 20 000-fold, with approximately a 3% yield. The molecular weight of the active species, as estimated by gel filtration chromatography, was 250 000. The purified enzyme was inhibited by NaCl (50% at 325 mM) and showed an optimum for dopamine sulfation at pH 7.0. Of the monoamine substrates examined, 4-methoxytyramine was the most extensively sulfated at 20 microM, while at higher substrate concentrations (200 microM), tyramine was the apparent preferred substrate. Kinetic analysis demonstrated that sulfation by M-PST proceeds via an ordered, bisubstrate reaction mechanism, where 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is the leading substrate. True Km values for dopamine and PAPS were 2.9 and 0.35 microM, respectively. The product inhibitor 3'-phosphoadenosine 5'-phosphate possessed a Ki of 0.07 microM, while the dead-end inhibitor ATP exhibited a Ki of 170 microM.  相似文献   

12.
This report describes the purification of a rat brain thyrotropin-releasing hormone (TRH) deamidating enzyme to apparent homogeneity. Criteria for purity include sodium dodecyl sulfate and disc gel electrophoresis, as well as isoelectric focusing (pI = 4.5). Enzyme purification was facilitated by development of a rapid and sensitive continuous assay using the substrate L-pyroglutamyl-Nim-benzylhistidyl-L-prolyl-beta-naphthylamide, which, upon hydrolysis of the naphthylamide, results in the appearance of the fluorescent product, beta-naphthylamine (beta NA). With this substrate the homogeneous enzyme had a specific activity of 14.5 mumol of beta NA min-1 mg-1. The only peptide product formed was shown to be L-pyroglutamyl-Nim-benzylhistidyl-L-proline. Hydrolysis of [L-prolyl-2,3-3H]TRH was shown to yield L-pyro-glutamyl-L-histidyl-L-proline as the only radiolabeled product. Characterization of the brain deamidase by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis indicated that the enzyme consists of a single polypeptide chain having molecular weights of 70,000 and 73,500, respectively. Rat brain TRH deamidase has an apparent Km of 34 micron, and a pH optimum between 7 and 8 using L-pyroglutamyl-Nim-benzylhistidyl-L-prolyl-beta-naphthylamide as a substrate. With this substrate, TRH was shown to be a competitive inhibitor with an apparent Ki of 120 +/- 20 micron.  相似文献   

13.
A calcium-activated neutral protease was purified from Japanese monkey brain by ammonium sulfate fractionation and sequential column chromatographies monitored by assay of caseinolytic activity. The purified enzyme gave a single protein band on non-denaturing polyacrylamide gel electrophoresis, and consisted of two subunits with molecular weights of 74,000 and 20,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme required millimolar order calcium ions for activation, and was optimally active at pH 7.5-8.0. Upon incubation with various neuropeptides as substrates, the enzyme preferentially cleaved the peptide bonds with Arg, Lys, or Tyr at the P1 position and an amino acid residue with a bulky aliphatic side chain, such as Leu, Val, or Ile, at the P2 position. The hydrolytic activity toward neuropeptides as well as casein was strongly inhibited by various thiol protease inhibitors. These results suggested that the brain calcium-activated neutral protease may participate in the degradation of neuropeptides in vivo.  相似文献   

14.
We have previously shown the existence of two separate enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA in rat brain microsomal membranes (1). Palmitoyl-CoA ligase activity was solubilized from brain microsomal membranes with 0.3% Triton X-100 and purified 93-fold by a combination of protein purification techniques. The Km values for the substrates palmitic acid, CoASH and ATP were 11.7 microM, 5.88 microM and 3.77 mM respectively. During activation of palmitic acid ATP is hydrolyzed to AMP and pyrophosphate, as evidenced by the inhibition of this activation by 5 mM concentrations of AMP, pyrophosphate or AMP and pyrophosphate to 70%, 60% and 85% respectively. The divalent metal ion Mg2+ was required for activity; its replacement with Mn2+ resulted in a 35% decrease in activity. Palmitoyl-CoA ligase activity was inhibited by the addition of oleic or stearic acids whereas addition of lignoceric acid or behenic acid had no effect. This supports our previous observation that palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes in rat brain microsomal membranes.  相似文献   

15.
Purification of a calcium-activated neutral proteinase from bovine brain   总被引:6,自引:0,他引:6  
A calcium-activated neutral proteinase (CANP) resolved into three components has been partially purified from bovine brain. The method of isolation has resulted in 22,000, 7,100, and 8,000-fold purification for CANP I, II and III respectively. All three fractions require Ca2+ for activation. The characterization of the purified CANP I has shown that it is activated by 250 microM Ca2+ and the enzyme loses its activity when incubated in the presence of Ca2+ without substrate. Mg2+ is ineffective. The enzyme degrades neurofilament triplet proteins, tubulin and casein efficiently. The myelin basic protein is hydrolyzed after longer incubation. Bovine serum albumin and histones are unaffected. The enzyme is active at pH 5.5 to 9.0 with optimum between pH 7.5 and 8.5. It has a Km of 1.8 X 10(-7) M for the 69,000 dalton neurofilament protein. The enzyme is inhibited by sulphydryl blocking reagents and also by EGTA, leupeptin and E-64c. The SDS-PAGE analysis of the enzyme fractions has shown a major band at 66-68,000 daltons and two minor bands at 60,000 and 48-50,000 daltons for CANP I; a major band at 48-50,000 daltons and a minor band at 30-32,000 daltons for CANP II and a predominant doublet at 30-32,000 daltons with a minor band at 48-50,000 daltons for CANP III. The degradation of neurofilament proteins suggests that the CANP(s) may be involved in the turnover of these proteins.  相似文献   

16.
Abstract A neutral endoxylanase from a culture filtrate of Aspergillus nidulans grown on oat spelt xylan was purified to apparent homogeneity. The purified enzyme showed a single band on SDS-PAGE with a molecular mass of 22,000 and had an isoelectric point of 6.4. The enzyme was a non-debranching endoxylanase highly specific for xylans and completely free from cellulolytic activity. The xylanase showed an optimum activity at pH 5.5 and 62°C and had a K m of 4.2 mg oat spelt xylan per ml and a V max of 710 μmol min−1 (mg protein)−1.  相似文献   

17.
Ceramide is an important molecule not only structurally but also regulationally as a modulator of various cellular events. Ceramidase (CDase) are classified into three different types (acid, alkaline, and neutral CDases). Neutral CDase could play an important role in the regulation of ceramide levels in the extracellular space. In this study, we describe the characterization of a neutral CDase orthologue from the filamentous fungus Aspergillus oryzae . The gene encoding the neutral CDase orthologue was cloned and overexpressed in A . oryzae . The purified recombinant enzyme was optimally active at pH 4.0–4.5 and 40 °C. The apparent K m and V max values of the enzyme for C12-NBD-ceramide were 3.32 μM and 0.085 μmol min−1 mg−1, respectively.  相似文献   

18.
Enkephalinase B from rat brain membrane which hydrolyzes enkephalin at the Gly-Gly bond was purified about 9400-fold to apparent electrophoretic homogeneity. The enzyme, which has a molecular weight of 82,000, consists of a single polypeptide chain. The enzyme has a pH optimum of 6.0-6.5 and is stable in the neutral pH region. The Km values of Met-enkephalin and Leu-enkephalin for this enzyme were 5.3 X 10(-5) M and 5.0 X 10(-5) M, respectively. The enzyme was inactivated by metal chelators, EDTA and o-phenanthroline and restored by the addition of divalent metal ions, Zn2+, Mn2+ or Fe2+, but was not inhibited by bestatin, amastatin, phosphoramidon or captopril. The enzyme hydrolyzed Met-enkephalin and Leu-enkephalin effectively. Although the enzyme belongs to the dipeptidyl aminopeptidase class, enkephalin-related peptides such as Leu-enkephalin-Arg, dynorphin (1-13) or alpha-endorphin and other biologically active peptides examined were hardly, or not at all, hydrolyzed. It was assumed that enkephalinase B functions mainly in enkephalin degradation in vivo.  相似文献   

19.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

20.
A beta-galactoside-binding activity has been detected in mammalian brain extracts using a hemagglutination test and a nerve cell aggregation assay. Inhibition studies suggested the involvement of lectin-carbohydrate interactions in these processes. In an attempt to explore further the biological role of brain lectins, the beta-galactoside-binding activity has been purified to apparent homogeneity from bovine and rat brain by salt extraction of the brain tissue and affinity chromatography on asialofetuin-agarose. The molecular weights determined by gel filtration, under native conditions on Ultrogel AcA-34, were 30,000 for the bovine brain lectin and 32,000 for the rat brain lectin; polyacrylamide gel electrophoresis in SDS gave molecular weights of 15,000 and 16,000, respectively, suggesting that the two brain lectins are dimers. Both lectins have an isoelectric point of 3.9. Amino acid composition data indicate that both lectins contain high proportions of glycine and acidic amino acids. The lectins are specific for beta-D-galactosides and related sugars and the configuration of carbon atoms 1, 2 and 4 seems of primary importance. Moreover, the nerve cell aggregation-promoting activity of the purified lectin is 300-fold that of the crude extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号