首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The induction of poly(A) polymerase was accompanied by a rise in the level of poly(A)+ RNA during early germination of excised wheat embryos (48 h). Fractionation of this RNA-processing enzyme by acrylamide gel electrophoresis and also by molecular sieving on Sephadex G-200 revealed a single molecular form of poly(A) polymerase with a molecular weight of 125 000. Wheat poly(A) polymerase specifically catalyzed the incorporation of [3H]AMP from [3H]ATP into the polyadenylate product only in the presence of primer RNA. Substitution of [3H]ATP by other labelled nucleoside triphosphates, such as [3H]GTP, [3H]UTP or [α-32P]CTP in the assay mixture did not yield any labelled polynucleotide reaction product. The 3H-labelled reaction product was retained on poly(U)-cellulose affinity column and was not degraded by RNAase A and RNAase T1 treatment. In addition, the nearest-neighbour frequency analysis of the 32P-labelled reaction product predominantly yielded [32P]AMP. Thus, characterization of the reaction product clearly indicated its polyadenylate nature. The average chain length of the [3H]poly(A) product was 26 nucleotides. Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) brought about a severe inhibition (62–79%) of poly(A) polymerase activity. Concurrently, there was a parallel decrease (73%) in the level of poly(A)+ RNA. Inhibition of poly(A) polymerase activity in infected embryos could be due to enzyme inactivation, which in turn brought about a downward shift in the level of poly(A)+ RNA. The crude extract of the cultured pathogen contains a non-dialysable, heat-labile factor, which, along with a ligand, inactivates (65–74%) poly(A) polymerase in vitro. The fungal extracts also contained a dialysable, heat-stable stimulatory effector which activated wheat poly(A) polymerase (3.6–4.0-fold stimulation) in vitro. However, the stimulatory fungal effector was not expressed in vivo, but was detectable after the inhibitory fungal factor had been destroyed by heat-treatment in our in vitro experiments.  相似文献   

2.
3.
Triticum durum‘Cappelli’ has a ‘relative’dormancy which can be broken by dry after-ripening at room temperature.The breakage of dormancy in the embryos of T. durum , is accompaniedby a decline in content and a different degree of synthesisof poly(A)+RNA. This work studies the activity of poly(A) polymerase(E.C. 2.7.7.19), the enzyme which permits polyadenylation. Anincrease in the activity of this enzyme in parallel with theenhanced rate of germination is revealed. Since poly(A) polymeraseactivity is the same in dormant and non-dormant dry embryos,it seems that the activity of the enzyme is not involved inthe breakage of dormancy. The use of cycloheximide and cordycepinshows the presence of enzymes with different origins: a storedenzyme and one bound to a long lived mRNA, present in dormantand non-dormant embryos, plus an enzyme bound to newly synthesizedmRNA which is mainly active in non-dormant embryos. Since dormancycould be the result of an interaction between hormones, thiswork analyses the effects of GA3and ABA on poly(A) polymerase.GA3enhanced poly(A) polymerase activity only in dormant embryoswhile ABA inhibited this activity only in non-dormant embryos.Cycloheximide applied to excised wheat embryos represses thestimulatory and inhibitory effects of GA3and ABA, respectively.The hormone action on poly(A) polymerase activity is thus dependenton de novo protein synthesis. Results using cordycepin suggestthe presence of a stored mRNA for poly(A) polymerase, togetherwith hormonal regulation of enzyme activity at a translationallevel. Copyright 1999 Annals of Botany Company Triticum durum , wheat, dormancy breakage, poly(A) polymerase, GA3, ABA, germination.  相似文献   

4.
Summary Nuclear poly(A)+ and polysomal poly(A)+ RNA were isolated from gastrula and early tadpole stages of the amphibianXenopus laevis. Complementary DNA was synthesized from all RNA preparations. Hybridization reactions revealed that at least all abundant and probably most of the less frequent nuclear and polysomal poly(A)+ RNA species present at the gastrula stage are also present at the early tadpole stage. On the other hand, there are nuclear RNA sequences at the latter stage which appear, if at all, only at lower concentrations at the gastrula stage. The polysomal poly(A)+ RNA hybridization reactions suggest the existence of polysomal poly(A)+ RNA sequences at early tadpole stages which are not present in the corresponding gastrula stage RNA.By cDNA hybridization with poly(A) RNA it could be shown that most of the poly(A)+ containing RNA sequences transcribed into cDNA were also present within the poly(A) RNA. It was estimated, that these sequences are 10 fold more abundant within the poly(A) polysomal RNA and 3–6 more abundant within the poly(A) nuclear RNA as compared to the poly(A)+ RNAs.  相似文献   

5.
Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) drastically lowered (70–73%) the relative abundance of poly(A)+ RNA. This was paralleled by a significant loss in the activities of RNA polymerase II (60–70%) and poly(A) polymerase (80–85%) enzymes. The inhibition of RNA polymerase II (60–65%) and poly(A) polymerase (70–85%) activities was also witnessed by the in vitro addition of the fungal extract to the enzyme preparations isolated from healthy embryos. The fungal extract showed negligible phosphatase and nuclease activities. This ruled out the possibility of rapid degradation of the labelled substrate [3H]ATP, primer RNA, or even the labelled reaction products under our assay conditions. The inhibitory effect of the fungal extract could be alleviated by fractionating the treated enzyme preparation by phosphocellulose chromatography. This indicated that the fungal extract was directly responsible for the inactivation of the polymerases in a reversible manner. The inhibitory function of the fungal extract was destroyed by treatment with pronase, but not with RNAase A and RNAase Ti. Poly(A) ‘tails’ were enzymatically excised from 32P-labelled poly(A)+ RNA and fractionated on acrylamide gels for autoradiographic analysis. The lengths of the 32P-labelled poly(A) ‘tails’ in control and infected embryos turned out to be identical (64 nucleotides). Our results suggest that the relative abundance of poly(A)+ RNA is diminished in fungal-infected wheat embryos through the selective inactivation of RNA polymerase II and poly(A) polymerase enzymes.  相似文献   

6.
Summary Ovaries ofC. erythrocephala synthesize large amounts of poly(A)+ and poly(A) RNA during early and middle stages of oogenesis as shown by labelling with3H-uridine in vivo. After incubation for 1 h, a striking difference in the electrophoretic pattern of newly synthesized labelled poly(A)+ RNA and the poly(A)+ RNA present in sufficient amounts for optical density measurements (steady state poly(A)+ RNA) was observed. During early and mid-oogenesis, in the poly(A) RNA fraction, 4S predominantly mature rRNA, 5S RNA and tRNA were labelled. These fractions were no longer synthesized during late oogenesis, whereas poly(A)+ RNA was labelled continously During oogenesis stage specific differences in the size distribution of newly synthesized and steady state poly(A)+ RNA were not obvious. However, different sizes of labelled poly(A)+ RNA species were detected in 0–2h old preblastoderm embryos, after injection of3H-uridine into females either 3–4 days (stage 3–4 of oogenesis) or 24 h before oviposition (stage 5–6 of oogenesis). This difference in RNA synthesis was related to the presence of active nurse cell nuclei. The poly(A)+ RNA fraction represents about 2–3% of the total RNA in both ovaries and freshly laid eggs as judged by measurements of optical density and radioactivity bound to oligo(dT). The length of poly(A)-segments in ovarian poly(A)+ RNA varied from about 30 to 200 nucleotides.  相似文献   

7.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

8.
The size range of poly(A)-containing RNA from Drosophila melanogaster embryos has been estimated by hybridization with 3H-labeled poly(U) and subsequent fractionation on sucrose gradients. The median size of nuclear poly(A)-containing RNA is about 30 S (6000 nucleotides), and the median size of cytoplasmic poly(A)-containing RNA is about 17 S (1800 nucleotides). The relationship of these sizes to messenger RNA needed to code for protein and to the length of DNA contained in a chromomere is discussed.Research grant support was provided by NIH (6M35558; HD-00266) and NSF (GB-30600).  相似文献   

9.
Polyadenylated-RNA (Poly(A)+RNA) levels have been studied during the germination of wheat embryos of high viability but differing vigour. In high-vigour embryos imbibed at 20°C the level of poly(A)+RNA falls dramatically over the first hour of imbibition, then remains constant up to 3 h of imbibition before increasing rapidly to a level similar to that found in the quiescent state by 7 h of imbibition. Median-vigour embryos imbibed at 20°C show similar changes in poly(A)+RNA content but the initial decrease and subsequent increase in poly(A)+RNA levels are less marked. On imbibition at 10°C, the poly(A)+RNA content in high-vigour embryos decreases to a lesser extent during the first hour than at 20°C and the level increases more slowly over the next 6 h than during the same time period at 20°C. The level of poly(A)+RNA in medianvigour embryos remains constant over the first 4 h of germination and then falls to a level of about half that found in quiescent high-vigour embryos. Polyacrylamide gel electrophoresis of total-RNA samples shows that the polyadenylic acid (poly(A)) sequences occur in RNA species ranging in size from 35-7S. Polyacrylamide gel electrophoresis of isolated poly(A) sequences demonstrates the presence of two size classes of poly(A) in quiescent embryos, but at 20°C a more heterodisperse pattern appears by 2 h of imbibition. At 10°C, two size classes of poly(A) persist throughout the period studied in both high- and median-vigour embryos, although in median-vigour embryos the ratio of larger: smaller poly(A)-tail sizes decreases more rapidly than in high-vigour embryos.Abbreviations Poly(A) polyadenylic acid - poly(U) polyuridylic acid - poly(A)+RNA polyadenylated RNA  相似文献   

10.
Effects of hypothyroidism on RNA synthesis in the adult rat brain   总被引:3,自引:0,他引:3  
In this study we investigated the effects of hypothyroidism on adult brain RNA synthesis. Our data show that in the cerebral hemispheres of hypothyroid rats there is a decrease in microsomal RNA content and microsomal [3H]uridine incorporation. Sucrose gradient analysis revealed that these changes are mainly associated with free ribosomes and subunits and reflect changes in rRNA. The above changes are accompanied by a decrease in RNA polymerase I activity. All of the above mentioned changes returned to normal after thyroxine (T4) treatment. In contrast to RNA polymerase I, RNA polymerase II activity was not affected. However, electrophoretic analysis of the in vitro poly(A)+RNA translation products revealed that hypothyroidism affects a few mRNAs. These results indicate that thyroid hormones have a role in adult brain tissue metabolism.  相似文献   

11.
12.
13.
The relative amounts of newly synthesized poly(A)+ and poly(A)? mRNA have been determined in developing embryos of the frog Xenopus laevis. Polysomal RNA was isolated and fractionated into poly(A)+ and poly(A)? RNA fractions with oligo(dT)-cellulose. In normal embryos the newly synthesized polysomal poly(A)+ RNA has a heterodisperse size distribution as expected of mRNA. The labeled poly(A)? RNA of polysomes is composed mainly of rRNA and 4S RNA. The amount of poly(A)? mRNA in this fraction cannot be quantitated because it represents a very small proportion of the labeled poly(A)? RNA. By using the anucleolate mutants of Xenopus which do not synthesize rRNA, it is possible to estimate the percentage of mRNA which contains poly(A) and lacks poly(A). All labeled polysomal RNA larger than 4S RNA which does not bind to oligo(dT)-cellulose in the anucleolate mutants is considered presumptive poly(A)? mRNA. The results indicate that about 80% of the mRNA lacks a poly(A) segment long enough to bind to oligo(dT). The poly(A)+ and poly(A)? mRNA populations have a similar size distribution with a modal molecular weight of about 7 × 105. The poly(A) segment of poly(A)+ mRNA is about 125 nucleotides long. Analysis of the poly(A)? mRNA fraction has shown that it lacks poly(A)125.  相似文献   

14.
The viability of seeds is associated with ageing and storageconditions. A loss of viability is accompanied by slow germination,reduced growth, and a decline in protein and poly(A)+RNA synthesis.This paper reports on the activity of poly(A) polymerase indry and germinating embryos of Triticum durum Desf. cv. Cappellicaryopses of different ages and viability. The enzyme was presentas a single form during ageing and germination. The poly(A)polymerase was active at decreasing levels in all aged dry embryos,in parallel with loss of viability. Its activity strongly increasedduring the germination only in viable embryos. The observedincrease was due to de novo synthesis of the enzyme. Poly(A)polymerase synthesis was low during germination of less viableembryos and absent in older ones. Reduced poly(A) polymeraseactivity in dry or germinated wheat embryos may cause a shorteningof poly(A) chains in vitro and a decline in poly(A)+RNA synthesis.Copyright1995, 1999 Academic Press Triticum durum Desf. cv. Cappelli, wheat, embryo, natural ageing, poly(A) polymerase  相似文献   

15.
Summary spätzle (spz), a maternal effect gene of Drosophila, is involved in the establishment of the dorso-ventral axis during embryogenesis. Eggs from females lacking the spz gene product develop into completely dorsalized embryos, i.e. the ventral and lateral pattern elements fail to develop. Upon injection of either cytoplasm or poly(A)+ RNA from early wild-type embryos, spz embryos develop lateral pattern elements represented by Filzkörper and in the case of injected cytoplasm additional ventral pattern elements represented by ventral setae. Wild-type cytoplasm retains the rescuing activity longer than the poly(A)+ RNA fraction does, and cytoplasm is always more effective in provoking the rescue than poly(A)+ RNA. Mosaic females containing spz germ cells surrounded by spz + tissues were generated by pole cell transplantations; a mutant genotype in the germ cells is sufficient to produce all aspects of the spz mutant phenotype, suggesting that the maternal source of spz gene product is the germ line.  相似文献   

16.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

17.
Summary Nuclear poly(A)+ RNA was isolated from gastrula and early tadpole stages ofXenopus laevis, transcribed into cDNA and integrated as double stranded cDNA by the G-C joining method into the Pst cleavage site of plasmid pBR 322. After cloning inE. coli strain HB 101 the clone libraries were hybridized to32P labelled cDNA derived from nuclear poly(A)+ RNA of the two different developmental stages. About 20% of the clones gave a positive hybridization signal thus representing RNA molecules of high and medium abundance. From these clones, some individual clones were identified containing sequences which are not present at the oocyte and gastrula stages but which are transcribed at the early tadpole stage of embryonic development.  相似文献   

18.
Summary A cDNA library was constructed from poly(A)+RNA of ripe avocado fruit. Colony hybridization identified a number of ripening specific clones of which one, pAV5, was shown to be specific for cellulase. Hybrid selection with pAV5 provided a message from ripe fruit that on in vitro translation yielded a polypeptide of 53kD, comigrating with purified avocado cellulase on SDS polyacrylamide gel electrophoresis. The translation product was selectively immunoprecipitated by antiserum to purified avocado cellulase. Immunoblotting of unripe and ripe avocado fruit extracts following SDS-PAGE showed a plentiful immunoreactive polypeptide in ripe fruit, and essentially none in unripe fruit. Hybridization of pAV5 to poly(A)+-RNA from unripe and ripe avocado fruit demonstrated that there is at least a 50-fold increase in the cellulase message concentration during ripening. Thus, the expression of cellulase enzyme activity during ripening is regulated by the appearance of mRNA coding for cellulase rather than by either translational or post-translational control mechanisms.Abbreviations poly(A)+ polyadenylated - DS sodium dodecyl sulfate - D kilodalton - bp base pairs Supported by Research Grant GM 19807 from the United States Public Health Service and by additional funds from the University of California Research Council.  相似文献   

19.
Xenopus laevis eggs and gastrula stage embryos were fractionated into three equal sections normal to the animal-vegetal axis, and poly(A)+ RNA was isolated from each section. Hybridization of these poly(A)+ RNAs with [32P]cDNA synthesized using animal or vegetal poly(A)+ RNAs showed no detectable differences in the extents or rates of reaction. Thus, the vast majority of poly(A)+ RNAs are not segregated along the animal-vegetal axis. To increase the sensitivity of these experiments, [32P]cDNAs were prepared which had reduced levels of RNA sequences from the animal region of the gastrula stage embryo or spawned unfertilized egg. Hybridization reactions with these probes showed that 3 to 5% of the input cDNA represents poly(A)+ RNA sequences enriched 2- to 20-fold in the vegetal region of the egg or gastrula stage embryo.  相似文献   

20.
We have isolated cDNA clones encoding a novel factor (PAP-I) that is a component of a multi-subunit poly(A) polymerase from pea seedlings. The encoded protein, when isolated from appropriately engineered Escherichia coli, was active as a poly(A) polymerase, either with an associated RNA binding cofactor (PAP-III) or with free poly(A) as an RNA substrate. The latter observation indicates that PAP-I is in fact a poly(A) polymerase. PAP-I bore a striking resemblance to an as yet uncharacterized cyanobacterial protein. This observation suggested a possible chloroplast localization for PAP-I. This hypothesis was tested and found to be substantiated; immunoblot analysis identified PAP-I in chloroplast but not nuclear extracts. Our results suggest that PAP-I is a component of the machinery that adds poly(A) to chloroplast RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号