首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V(H)) and variable light (V(L)) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V(H)-V(L) M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V(L) domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V(L) forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V(L) homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V(H)-V(L) M8 and M8V(L), led us to rationally design tandem, covalent homodimers of M8V(L) domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.  相似文献   

2.
The antigen binding site of antibodies usually comprises associated heavy (V(H)) and light (V(L)) chain variable domains, but in camels and llamas, the binding site frequently comprises the heavy chain variable domain only (referred to as V(HH)). In contrast to reported human V(H) domains, V(HH) domains are well expressed from bacteria and yeast, are readily purified in soluble form and refold reversibly after heat-denaturation. These desirable properties have been attributed to highly conserved substitutions of the hydrophobic residues of V(H) domains, which normally interact with complementary V(L) domains. Here, we describe the discovery and characterisation of an isolated human V(H) domain (HEL4) with properties similar to those of V(HH) domains. HEL4 is highly soluble at concentrations of > or =3 mM, essentially monomeric and resistant to aggregation upon thermodenaturation at concentrations as high as 56 microM. However, in contrast to V(HH) domains, the hydrophobic framework residues of the V(H):V(L) interface are maintained and the only sequence changes from the corresponding human germ-line segment (V3-23/DP-47) are located in the loops comprising the complementarity determining regions (CDRs). The crystallographic structure of HEL4 reveals an unusual feature; the side-chain of a framework residue (Trp47) is flipped into a cavity formed by Gly35 of CDR1, thereby increasing the hydrophilicity of the V(H):V(L) interface. To evaluate the specific contribution of Gly35 to domain properties, Gly35 was introduced into a V(H) domain with poor solution properties. This greatly enhanced the recovery of the mutant from a gel filtration matrix, but had little effect on its ability to refold reversibly after heat denaturation. Our results confirm the importance of a hydrophilic V(H):V(L) interface for purification of isolated V(H) domains, and constitute a step towards the design of isolated human V(H) domains with practical properties for immunotherapy.  相似文献   

3.
We describe a noncompetitive homogeneous bioluminescent immunoassay based on the antigen-dependent reassociation of antibody variable domains (open sandwich bioluminescent immunoassay, OS-BLIA). The reassociation of two chimeric proteins, an antibody heavy-chain fragment (V(H))-Renilla luciferase (Rluc) and an antibody light-chain fragment (V(L))-enhanced yellow fluorescent protein (EYFP), was monitored by a bioluminescence resonance energy transfer (BRET) between the two. Upon simple mixing of the reagents with the sample, an antigen-dependent increase in BRET was observed with a measurable concentration range of 0.1 to approximately 10 microg/ml antigen hen egg lysozyme. Compared with our comparable assays based on fluorescence resonance energy transfer (FRET), a 10-fold improvement in the sensitivity was attained, probably due to a reduction in reagent concentration.  相似文献   

4.
We report a strategy for generating efficient signal transduction with unnatural heterologous receptor combinations. As previously described [Ueda, H., Kawahara, M. et al. (2000) J. Immunol. Methods 241, 159-170], chimeric receptors composed of the V(H)/V(L) domains of anti-hen egg lysozyme antibody HyHEL-10 and N-terminally truncated erythropoietin receptor (EpoR) can be activated by lysozyme. When the cytoplasmic domains of these receptors were substituted with one derived from gp130, IL-3 dependent Ba/F3 cells expressing both V(H)-gp130 and V(L)-gp130 grew dose-dependently when given lysozyme without IL-3. However, cells expressing the heterologous pair of V(H)-gp130 and V(L)-EpoR also showed more efficient and stricter lysozyme-dependent proliferation in the absence of IL-3, indicating this combination is as an efficient and strict signal transducer as wild-type EpoR. The immunoprecipitation data indicated the existence of a preformed V(H)-gp130 and V(L)-EpoR heterodimer in the absence of lysozyme, suggesting the crucial role of a receptor conformational change in signal triggering as well as wild-type EpoR and gp130. Phosphorylation of JAK2, STAT3, and STAT5 was observed upon the addition of lysozyme, suggesting the activation of both EpoR- and gp130-derived signals.  相似文献   

5.
Camelidae possess an unusual form of antibodies lacking the light chains. The variable domain of these heavy chain antibodies (V(HH)) is not paired, while the V(H) domain of all other antibodies forms a heterodimer with the variable domain of the light chain (V(L)), held together by a hydrophobic interface. Here, we analyzed the biophysical properties of four camelid V(HH) fragments (H14, AMD9, RN05, and CA05) and two human consensus V(H)3 domains with different CDR3 loops to gain insight into factors determining stability and aggregation of immunoglobulin domains. We show by denaturant-induced unfolding equilibria that the free energies of unfolding of V(HH) fragments are characterized by Delta G(N-U) values between 21.1 and 35.0 kJ/mol and thus lie in the upper range of values for V(H) fragments from murine and human antibodies. Nevertheless, the V(HH) fragments studied here did not reach the high values between 39.7 and 52.7 kJ/mol of the human consensus V(H)3 domains with which they share the highest degree of sequence similarity. Temperature-induced unfolding of the V(HH) fragments that were studied proved to be reversible, and the binding affinity after cooling was fully retained. The melting temperatures were determined to be between 60.1 and 66.7 degrees C. In contrast, the studied V(H)3 domains aggregated during temperature-induced denaturation at 63-65 degrees C. In summary, the camelid V(HH) fragments are characterized by a favorable but not unusually high stability. Their hallmark is the ability to reversibly melt without aggregation, probably mediated by the surface mutations characterizing the V(HH) domains, which allow them to regain binding activity after heat renaturation.  相似文献   

6.
We have produced a panel of murine anti-streptococcal mAbs, expressing identical V domains and different H chain C domains, corresponding to the IgG3, IgG1, and IgG2b subclasses. We have used these mAb to evaluate the role of IgG subclass-specific C region determinants in modulating the interaction between antibody and the bacterial surface. We report, for the first time, that V region-identical murine IgG of different subclasses exhibit substantial differences in binding to specific Ag; IgG3 mAb binds more strongly to streptococci than the IgG1 and IgG2b mAb or IgG3-derived F(ab')2 fragments. Furthermore, the IgG3 mAB binds cooperatively to the bacteria, whereas the IgG1, IgG2b, and IgG3-derived F(ab')2 fragments do not exhibit significant cooperativity, which suggests that differences in Fc region structure can affect antibody binding to multivalent Ag by modulating the potential for cooperative binding. These results suggest a plausible mechanism by which murine IgG3 could be more effective, than other antibodies bearing identical V domains, but of different gamma-subclass, in mediating bacterial immunity.  相似文献   

7.
Although the cooperativity of the V(H) and V(L) domains of an antibody in antigen binding has been extensively studied, the interaction between the V(H) and V(L) domains had not received sufficient attention. To systematically investigate the relationship between the amino acid sequence and V(H)/V(L) interaction strength, we here used a set of anti-bovine serum albumin antibodies having a single human framework for V(H) (V3-23/DP-47 and JH4b) and Vk (O12/O2/DPK9 and Jk1), but with different V(H)/V(L) interaction strengths. By phage display of a V(H) mini-library and analysis of the interaction of amino acids with immobilized V(L) fragments, the residue at H95 (Kabat numbering) at the beginning of seven CDR H3 residues was found to play a key role in determining the V(H)/V(L) interaction. On saturation mutagenesis of H95, Gly showed the strongest interaction, while Asp, Asn, and Glu showed lesser interaction in that order. The generality of the rule was confirmed by the test with urine-derived human L chain instead of a particular V(L). The results demonstrate that H95 plays a central role in deciding the V(H)/V(L) interaction of human Fvs that have most commonly found frameworks.  相似文献   

8.
We report the first construction of two combinatorial human phage display libraries derived from malaria-immune patients. Specific single-chain Fv fragments (scFv) against Pfs48/45, a gamete surface protein of the sexual stages of Plasmodium falciparum, were selected and analyzed extensively. The selected scFv reacted with the surface of extracellular sexual forms of the parasite and showed Pfs48/45 reactivity on immunoblot. The scFv inhibit binding of human malaria sera to native Pfs48/45 from gametocytes. Moreover, the scFv bind to target epitopes of Pfs48/45 exposed in natural infections. Sequence analysis of eight scFv clones specific for epitope III of Pfs48/45 revealed that these clones could be divided into one V(H) family-derived germ-line gene (V(H)1) and two V(L) family segments (V(L)2 and V(K)I).  相似文献   

9.
While many antibodies with strong antigen-binding affinity have stable variable regions with a strong antibody heavy chain variable region fragment (V(H))/antibody light chain variable region fragment (V(L)) interaction, the anti-lysozyme IgG HyHEL-10 has a fairly strong affinity, yet a very weak V(H)/V(L) interaction strength, in the absence of antigen. To investigate the possible relationship between antigen-binding affinity and V(H)/V(L) interaction strength, a novel phage display system that can switch two display modes was employed. We focused on the two framework region 2 regions of the HyHEL-10 V(H) and V(L), facing each other at the domain interface, and a combinatorial library was made in which each framework region 2 residue was mixed with that of D1.3, which has a far stronger V(H)/V(L) interaction. The phagemid library, encoding V(H) gene 7 and V(L) amber codon gene 9, was used to transform TG-1 (sup+), and the phages displaying functional variable regions were selected. The selected phages were then used to infect a nonsuppressing strain, and the culture supernatant containing V(H)-displaying phages and soluble V(L) fragment was used to evaluate the V(H)/V(L) interaction strength. The results clearly showed the existence of a key framework region 2 residue (H39) that strongly affects V(H)/V(L) interaction strength, and a marked positive correlation between the antigen-binding affinity and the V(H)/V(L) interaction, especially in the presence of a set of particular V(L) residues. The effect of the H39 mutation on the wild-type variable region was also confirmed by a SPR biosensor as a several-fold increase in antigen-binding affinity owing to an increased association rate, while a slight decrease was observed for the single-chain variable region.  相似文献   

10.
A site-specific and efficient fluorolabeling of antibody variable regions with green fluorescent protein (GFP) variants and its application to an energy transfer-based homogeneous fluoroimmunoassay (open sandwich FIA) were attempted. Two chimeric proteins, Trx-V(H)-EBFP and Trx-V(L)-EGFP, consisting of V(H) and V(L) fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 and two GFP color variants, EBFP and EGFP, respectively, were designed to be expressed in cytoplasm of trxB - mutant Escherichia coli as fusions with thioredoxin from E.coli The mixture of two proteins could be purified with HEL-affinity chromatography, retaining sufficient intrinsic fluorescence and binding activity to HEL. A significant increase in fluorescence resonance energy transfer (FRET) dependent on HEL concentration was observed, indicating the reassociation of the V(H) and V(L) domains of these chimeric proteins due to co-existing antigen. With this open sandwich FIA, an HEL concentration of 1-100 microg/ml could be non-competitively determined. The assay could be performed in a microplate format and took only a few minutes to obtain a sufficient signal after simple mixing of the chimeric proteins with samples. This represents the first demonstration that the FRET between GFP variants is applicable to homogeneous immunoassay.  相似文献   

11.
Wang X  Zhong P  Luo PP  Wang KC 《PloS one》2011,6(4):e19023
A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H) and V(L) for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H) frameworks and V(H)-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.  相似文献   

12.
Bispecific single-chain diabodies (scDb) consist of the variable heavy and light chain domains of two antibodies connected by three linkers. The structure of an scDb in the V(H)-V(L) orientation is V(H)A-linkerA-V(L)B-linkerM-V(H)B-linkerB-V(L)A, with linkers A and B routinely chosen to be 5-6 residues and linker M 15-20 residues. Here, we applied display of scDb on filamentous phage to analyse the composition of optimal linker sequences. The three linkers were randomized in length and sequence using degenerated triplets coding for only six hydrophilic or aliphatic amino acids (Thr, Ser, Asp, Asn, Gly, Ala). Antigen-binding clones were then isolated by one to two rounds of selection on the two different antigens recognized by the bispecific scDb. Using an scDb directed against carcinoembryonic antigen (CEA) and beta-galactosidase (Gal), we found that monomeric scDb had a preferred length of 15 or more amino acid residues for the middle linker M and of 3-6 residues for the linkers A and B. No obvious bias towards a preferred linker sequence was observed. Reduction of the middle linker below 13 residues led to the formation of dimeric scDb, which most likely results from interchain pairing between all the V(H) and V(L) domains. Dimeric scDb were also formed by fragments possessing a long linker M and linkers A and B of 0 or 1 residue. We assume that these dimeric scDb are formed by intrachain pairing of the central variable domains and interchain pairing of the flanking variable domains. Thus, the latter molecules represent a novel format of bispecific and tetravalent molecules. The described strategy allows for the isolation of both optimized and minimal linker sequences for the assembly of monomeric or dimeric single-chain diabodies.  相似文献   

13.
In recent years a variety of recombinant methods have been developed for efficient production of bispecific antibodies (BsAb) in various formats. Bispecific diabody (bDAb), a 55-60 kDa molecule comprising two non-covalently associated cross-over single chain Fv (scFv) polypeptides, represents one of the most promising as well the most straightforward approaches to BsAb production. Here we constructed a bDAb, using two human scFv, 11F8 and A12, directed against the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGFR), respectively, as the building blocks. A total of 8 scFv and diabody constructs were prepared comprising the same two variable heavy (V(H)) and variable light (V(L)) chain domains but arranged in different orientations. V(H)/V(L) orientation, i.e., V(H)-linker-V(L) or V(L)-linker-V(H), showed significant effects on the expression and antigen-binding activity of scFv and monospecific diabody of both 11F8 and A12. Further, only 2 out of the 4 possible V(H)/V(L) orientations/arrangements in bDAb construction yielded active products that retain binding activity to both EGFR and IGFR. Both active bDAb preparations retained their original antigen-binding activity after incubation at 37 degrees C in mouse serum for up to 7 days, indicating excellent stability of the constructs. Taken together, our results underscore the importance of identifying/selecting optimal V(H)/V(L) orientation/arrangement for efficient production of active bDAb.  相似文献   

14.
A central paradigm in immunology states that successful generation of high affinity antibodies necessitates an immense primary repertoire of antigen-combining sites. Much of the diversity of this repertoire is provided by varying one antigen binding loop, created by inserting randomly a D (diversity) gene out of a small pool between the V and J genes. It is therefore assumed that any particular D-encoded region surrounded by different V and J regions adopts a different conformation. We have solved the structure of two lysozyme-specific variable domains of heavy-chain antibodies isolated from two strictly unrelated dromedaries. These antibodies recombined identical D gene sequences to different V and J precursors with significant variance in their V(D)J junctions. Despite these large differences, the D-encoded loop segments adopt remarkably identical architectures, thus directing the antibodies toward identical epitopes. Furthermore, a striking convergent maturation process occurred in the V region, adapting both binders for their sub-nanomolar affinity association with lysozyme. Hence, on a structural level, humoral immunity may rely more on well developed maturation and selection systems than on the acquisition of large primary repertoires.  相似文献   

15.
Intact fibronectin (FN) protects cells from apoptosis. When FN is fragmented, specific domains induce proteinase expression in fibroblasts. However, it is not known whether specific domains of FN can also regulate apoptosis. We exposed fibroblasts to four recombinant FN fragments and then assayed for apoptosis using criteria of cellular shape change, condensed nuclear morphology, and DNA fragmentation. The fragments extended from the RGD-containing repeat III10 to III15; they included (V(+)) or excluded (V(-)) the alternatively spliced V region and contained either a mutated (H(-)) or an unmutated (H(+)) heparin binding domain. Only the V(+)H(-) fragment triggered decreases in pp125(FAK) levels and apoptosis, which was rescued by intact FN and inhibitors of caspase-1 and caspase-3. This apoptotic mechanism was mediated by a chondroitin sulfate proteoglycan, since treating cells with chondroitin sulfate or chondroitinase reversed the apoptotic cell shape changes. The alpha4 integrin receptor may also be involved, since using a blocking antibody to alpha4 alone induced apoptotic cell shape changes, whereas co-treatment with this antibody plus V(+)H(+) reversed these effects. These results demonstrate that the V and heparin binding domains of FN modulate pp125(FAK) levels and regulate apoptosis through a chondroitin sulfate proteoglycan- and possibly alpha4 integrin-mediated pathway, which triggers a caspase cascade.  相似文献   

16.
Anti-DNA antibodies have the potential to be applied in vast fields of fundamental as well as medical research. They are found in autoimmune diseases, such as systemic lupus erythemotosus. In most cases, anti-dsDNA antibodies do not present sequence specificity and are of low affinity. The dominant role of VH domains in DNA recognition induced us to search for binders based on VH dimers (VHD), previously reported to bind different protein antigens. We screened a phage displayed homo-VHD library against a 19-bp dsDNA sequence. A sequence-specific binder was selected, which recognizes the terminal located CTGC motif with a Kd of 250 nM. Association of the two identical VH domains of the molecule was shown to be essential for binding.  相似文献   

17.
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.  相似文献   

18.
Previous studies have indicated differences in the specificity-determining residues (SDRs) of antibodies that recognize haptens, peptides, or proteins. Here, we designed a V(H) repertoire based on the human scaffold 3-23/J(H)4 and diversification of high and medium-usage SDRs of anti-protein and anti-peptide antibodies. The repertoire was synthesized by overlapping polymerase chain reaction (PCR) and combined with the V(L) chain of the anti-hen egg-white lysozyme (HEL) antibody D1.3. The resulting chimeric single-chain Fv fragments (scFvs) phage-displayed library was panned in HEL-coated immunotubes. After two rounds of selection under non-stringent conditions, that is, trypsinization after 2 h of incubation at room temperature, 63 of 167 clones analyzed (38%) were found to express scFvs specific to HEL. Twenty clones were characterized by DNA sequencing resulting in 10 unique scFvs. Interestingly, the panel of unique scFvs was highly diverse, with V(H) sequences differing in 16 of the 17 positions variegated in the repertoire. Thus, diverse chemico-physical and structural solutions were selected from the library, even when the V(H) repertoire was constrained by the V(L) chain of D1.3 to yield binders against a definite region of HEL surface. The more often selected scFvs, namely H6-1 and B7-1, which differed in eight SDRs, showed levels of expression in E. coli TG1 strain, 6 and 10 times higher than the parental D1.3 Fv fragment, respectively. Dissociation constants (K(Ds)) measured in the BIAcore were 11 and 6.6 nM for H6-1 and B7-1, respectively. These values compared well to the K(D) of 4.7 nM measured for D1.3, indicating that the V(H) repertoire here designed is a valuable source of diverse, well-expressed and high affinity V(H) domains.  相似文献   

19.
In our previous study, a kind of novel hybrid immunoglobulin (Ig)-binding proteins (IBPs) was obtained with the characteristic structure of alternately arranged Finegoldia magna (formerly Peptostreptococcus magnus) protein L (P. magnus protein L, PpL) B3 domain (B3) and Staphylococcal protein A (SpA) D domain (D). In this study, two representative molecules of these novel proteins, LD3 (B3-D-B3) and LD5 (B3-D-B3-D-B3) (LD3/5), showed substantially higher affinity for IgG-F(ab')2, IgM, and IgA than 4L (B3-B3-B3-B3) or SpA, which were also demonstrated by surface plasmon resonance detection. Further, LD5 showed much stronger binding to single-chain Fv (scFv) KM38 (V(H)3-V(kappa)I) than to KM41 (V(H)1-V(kappa)III) or KM36 (V(H)3-V(kappa)III). Competitive inhibition studies showed that 4L alone or in combination with SpA (4L + SpA) was a weaker inhibitor than LD3/5 in inhibiting LD3/5's binding to IgG-F(ab')2, IgM, or IgA. The computer modeling suggested that the B3-D arrangement in LD3/5 could simultaneously bind to V(H)3 and V(kappa). Thus, our results indicated for the first time that alternate arrangement of B3 and D domains creates synergistic double-site binding to V(H)3 and V(kappa) regions of fragment of antigen binding. The different competitive inhibition pattern of binding of LD5 to scFv KM38 by 4L + SpA suggested strict use of antibody conformation for this simultaneous double-site binding. The demonstration of this novel binding property would promote to achieve the designed hybrid IBPs for useful immunological applications.  相似文献   

20.
The refolding kinetics of a single-chain Fv (scFv) fragment, derived from a stabilized mutant of the phosphorylcholine binding antibody McPC603, was investigated by H/D exchange and ESI-MS and compared with the folding kinetics of its constituting domains V(H) and V(L). Both V(H) and V(L) adopt essentially native-like exchange protection within the dead time of the manual-mixing H/D exchange experiment (10 s) and in the case of V(L), which contains two cis-prolines in the native conformation, this fast protection is independent of proline cis/trans isomerization. At the earliest time point resolvable by manual mixing, fewer deuterons are protected in the scFv fragment than in the two isolated domains together, despite the fact that the scFv fragment is significantly more stable than V(L) and V(H). Full H/D exchange protection in the scFv fragment is gained on a time scale of minutes. This means that the domains in the scFv fragment do not refold independently. Rather, they associate prematurely and in nonnative form, a kinetic trap. Unproductive domain association is observed both after equilibrium- and short-term denaturation. For the equilibrium-denatured scFv fragment, whose native structure formation is dependent on a cis conformation of an interface proline in V(L), this cis/trans isomerization reaction proceeds about one order in magnitude more slowly than the escape from the trap to a conformation where full H/D exchange protection is already achieved. We interpret these data in terms of a general kinetic scheme involving intermediates with and without domain association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号