首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全局极小化方法及其在结构生物学中的应用近年来取得了显著的进展.适当简化的分子对接问题是全局极小化方法的一个很好目标,并且是当前一个相当活跃的研究领域.对接可分为两类:主要用于从头配体设计的细致对接和用于已知化合物数据库筛选以发现药物的粗略对接,它们对全局极小化算法的要求是不同的.简要评述了新出现的适合于对接问题的随机和确定性全局极小化算法,其中势能平滑算法看来很有希望,值得密切关注.  相似文献   

2.
One of the challenges faced by all molecular docking algorithms is that of being able to discriminate between correct results and false positives obtained in the simulations. The scoring or energetic function is the one that must fulfill this task. Several scoring functions have been developed and new methodologies are still under development. In this paper, we have employed the Compactly Supported Radial Basis Functions (CSRBF) to create analytical representations of molecular surfaces, which are then included as key components of a new scoring function for molecular docking. The method proposed here achieves a better ranking of the solutions produced by the program DOCK, as compared with the ranking done by its native contact scoring function. Our new analytical scoring function based on CSRBF can be easily included in different available docking programs as a reliable and quick filter in large-scale docking simulations.  相似文献   

3.
Docking of hydrophobic ligands with interaction-based matching algorithms   总被引:3,自引:0,他引:3  
MOTIVATION: Matching of chemical interacting groups is a common concept for docking and fragment placement algorithms in computer-aided drug design. These algorithms have been proven to be reliable and fast if at least a certain number of hydrogen bonds or salt bridges occur. However, the algorithms typically run into problems if hydrophobic fragments or ligands should be placed. In order to dock hydrophobic fragments without significant loss of computational efficiency, we have extended the interaction model and placement algorithms in our docking tool FlexX. The concept of multi-level interactions is introduced into the algorithms for automatic selection and placement of base fragments. RESULTS: With the multi-level interaction model and the corresponding algorithmic extensions, we were able to improve the overall performance of FlexX significantly. We tested the approach with a set of 200 protein-ligand complexes taken from the Brookhaven Protein Data Bank (PDB). The number of test cases which can be docked within 1.5 A RMSD from the crystal structure can be increased from 58 to 64%. The performance gain is paid for by an increase in computation time from 73 to 91 s on average per protein-ligand complex. AVAILABILITY: The FlexX molecular docking software is available for UNIX platforms IRIX, Solaris and Linux. See http://cartan.gmd.de/FlexX for additional information.  相似文献   

4.
Knowledge of the spatial structure of complexes formed by cellular proteins and membrane receptors with their respective ligands is an important step towards understanding the mechanisms of their functioning. Rational drug design and the search for new therapeutically active compounds also require structural information on the interaction of prototypic drugs with the target protein. The present review briefly describes the main computational methods of molecular docking that are used to predict the conformation of a ligand bound to the active center of a protein. Approaches enabling an increase of the precision and efficiency of the currently used docking algorithms are exemplified by the recent projects of the Laboratory of Biomolecular Modeling of IBCh RAS. Special attention is paid to hydrophilic and hydrophobic interactions, as well as to the stacking phenomena that account for the molecular recognition of specific ligand fragments. These types of contacts are often inadequately described by the algorithms of the estimation of the intermolecular interaction energy of the existing docking programs (scoring functions), this ultimately leading to erroneous predictions of the three-dimensional structure of complexes. Therefore, a thorough consideration of these interactions is one of the most important tasks of molecular modeling.  相似文献   

5.
6.
Protein-ligand docking: current status and future challenges   总被引:1,自引:0,他引:1  
Understanding the ruling principles whereby protein receptors recognize, interact, and associate with molecular substrates and inhibitors is of paramount importance in drug discovery efforts. Protein-ligand docking aims to predict and rank the structure(s) arising from the association between a given ligand and a target protein of known 3D structure. Despite the breathtaking advances in the field over the last decades and the widespread application of docking methods, several downsides still exist. In particular, protein flexibility-a critical aspect for a thorough understanding of the principles that guide ligand binding in proteins-is a major hurdle in current protein-ligand docking efforts that needs to be more efficiently accounted for. In this review the key concepts of protein-ligand docking methods are outlined, with major emphasis being given to the general strengths and weaknesses that presently characterize this methodology. Despite the size of the field, the principal types of search algorithms and scoring functions are reviewed and the most popular docking tools are briefly depicted. Recent advances that aim to address some of the traditional limitations associated with molecular docking are also described. A selection of hand-picked examples is used to illustrate these features.  相似文献   

7.
We present a two-stage hybrid-resolution approach for rigid-body protein-protein docking. The first stage is carried out at low-resolution (15°) angular sampling. In the second stage, we sample promising regions from the first stage at a higher resolution of 6°. The hybrid-resolution approach produces the same results as a 6° uniform sampling docking run, but uses only 17% of the computational time. We also show that the angular distance can be used successfully in clustering and pruning algorithms, as well as the characterization of energy funnels. Traditionally the root-mean-square-distance is used in these algorithms, but the evaluation is computationally expensive as it depends on both the rotational and translational parameters of the docking solutions. In contrast, the angular distances only depend on the rotational parameters, which are generally fixed for all docking runs. Hence the angular distances can be pre-computed, and do not add computational time to the post-processing of rigid-body docking results.  相似文献   

8.
9.
Significant efforts have been devoted in the last decade to improving molecular docking techniques to predict both accurate binding poses and ranking affinities. Some shortcomings in the field are the limited number of standard methods for measuring docking success and the availability of widely accepted standard data sets for use as benchmarks in comparing different docking algorithms throughout the field. In order to address these issues, we have created a Cross‐Docking Benchmark server. The server is a versatile cross‐docking data set containing 4,399 protein‐ligand complexes across 95 protein targets intended to serve as benchmark set and gold standard for state‐of‐the‐art pose and ranking prediction in easy, medium, hard, or very hard docking targets. The benchmark along with a customizable cross‐docking data set generation tool is available at http://disco.csb.pitt.edu . We further demonstrate the potential uses of the server in questions outside of basic benchmarking such as the selection of the ideal docking reference structure.  相似文献   

10.
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem.  相似文献   

11.
To address challenging flexible docking problems, a number of docking algorithms pregenerate large collections of candidate conformers. To remove the redundancy from such ensembles, a central problem in this context is to report a selection of conformers maximizing some geometric diversity criterion. We make three contributions to this problem. First, we resort to geometric optimization so as to report selections maximizing the molecular volume or molecular surface area (MSA) of the selection. Greedy strategies are developed, together with approximation bounds. Second, to assess the efficacy of our algorithms, we investigate two conformer ensembles corresponding to a flexible loop of four protein complexes. By focusing on the MSA of the selection, we show that our strategy matches the MSA of standard selection methods, but resorting to a number of conformers between one and two orders of magnitude smaller. This observation is qualitatively explained using the Betti numbers of the union of balls of the selection. Finally, we replace the conformer selection problem in the context of multiple-copy flexible docking. On the aforementioned systems, we show that using the loops selected by our strategy can improve the result of the docking process.  相似文献   

12.
Ehrlich LP  Nilges M  Wade RC 《Proteins》2005,58(1):126-133
Accounting for protein flexibility in protein-protein docking algorithms is challenging, and most algorithms therefore treat proteins as rigid bodies or permit side-chain motion only. While the consequences are obvious when there are large conformational changes upon binding, the situation is less clear for the modest conformational changes that occur upon formation of most protein-protein complexes. We have therefore studied the impact of local protein flexibility on protein-protein association by means of rigid body and torsion angle dynamics simulation. The binding of barnase and barstar was chosen as a model system for this study, because the complexation of these 2 proteins is well-characterized experimentally, and the conformational changes accompanying binding are modest. On the side-chain level, we show that the orientation of particular residues at the interface (so-called hotspot residues) have a crucial influence on the way contacts are established during docking from short protein separations of approximately 5 A. However, side-chain torsion angle dynamics simulations did not result in satisfactory docking of the proteins when using the unbound protein structures. This can be explained by our observations that, on the backbone level, even small (2 A) local loop deformations affect the dynamics of contact formation upon docking. Complementary shape-based docking calculations confirm this result, which indicates that both side-chain and backbone levels of flexibility influence short-range protein-protein association and should be treated simultaneously for atomic-detail computational docking of proteins.  相似文献   

13.
Venkatraman V  Ritchie DW 《Proteins》2012,80(9):2262-2274
Modeling conformational changes in protein docking calculations is challenging. To make the calculations tractable, most current docking algorithms typically treat proteins as rigid bodies and use soft scoring functions that implicitly accommodate some degree of flexibility. Alternatively, ensembles of structures generated from molecular dynamics (MD) may be cross-docked. However, such combinatorial approaches can produce many thousands or even millions of docking poses, and require fast and sensitive scoring functions to distinguish them. Here, we present a novel approach called "EigenHex," which is based on normal mode analyses (NMAs) of a simple elastic network model of protein flexibility. We initially assume that the proteins to be docked are rigid, and we begin by performing conventional soft docking using the Hex polar Fourier correlation algorithm. We then apply a pose-dependent NMA to each of the top 1000 rigid body docking solutions, and we sample and re-score multiple perturbed docking conformations generated from linear combinations of up to 20 eigenvectors using a multi-threaded particle swarm optimization algorithm. When applied to the 63 "rigid body" targets of the Protein Docking Benchmark version 2.0, our results show that sampling and re-scoring from just one to three eigenvectors gives a modest but consistent improvement for these targets. Thus, pose-dependent NMA avoids the need to sample multiple eigenvectors and it offers a promising alternative to combinatorial cross-docking.  相似文献   

14.
Conformational analysis of molecular chains using nano-kinematics   总被引:2,自引:0,他引:2  
We present algorithms for 3–D manipulation and conforma–tionalanalysis of molecular chains, when bond lengths, bond anglesand related dihedral angles remain fixed. These algorithms areuseful for local deformations of linear molecules, exact ringclosure in cyclic molecules and molecular embedding for shortchains. Other possible applications include structure prediction,protein folding, conformation energy analysis and 3D molecularmatching and docking. The algorithms are applicable to all serialmolecular chains and make no asssumptions about their geometry.We make use of results on direct and inverse kinematics fromrobotics and mechanics literature and show the correspondencebetween kinematics and conformational analysis of molecules.In particular, we pose these problems algebraically and computeall the solutions making use of the structure of these equationsand matrix computations. The algorithms have been implementedand perform well in practice. In particular, they take tensof milliseconds on current workstations for local deformationsand chain closures on molecular chains consisting of six orfewer rotatable dihedral angles  相似文献   

15.
Here we carry out an examination of shape complementarity as a criterion in protein-protein docking and binding. Specifically, we examine the quality of shape complementarity as a critical determinant not only in the docking of 26 protein-protein "bound" complexed cases, but in particular, of 19 "unbound" protein-protein cases, where the structures have been determined separately. In all cases, entire molecular surfaces are utilized in the docking, with no consideration of the location of the active site, or of particular residues/atoms in either the receptor or the ligand that participate in the binding. To evaluate the goodness of the strictly geometry-based shape complementarity in the docking process as compared to the main favorable and unfavorable energy components, we study systematically a potential correlation between each of these components and the root mean square deviation (RMSD) of the "unbound" protein-protein cases. Specifically, we examine the non-polar buried surface area, polar buried surface area, buried surface area relating to groups bearing unsatisfied buried charges, and the number of hydrogen bonds in all docked protein-protein interfaces. For these cases, where the two proteins have been crystallized separately, and where entire molecular surfaces are considered without a predefinition of the binding site, no correlation is observed. None of these parameters appears to consistently improve on shape complementarity in the docking of unbound molecules. These findings argue that simplicity in the docking process, utilizing geometrical shape criteria may capture many of the essential features in protein-protein docking. In particular, they further reinforce the long held notion of the importance of molecular surface shape complementarity in the binding, and hence in docking. This is particularly interesting in light of the fact that the structures of the docked pairs have been determined separately, allowing side chains on the surface of the proteins to move relatively freely. This study has been enabled by our efficient, computer vision-based docking algorithms. The fast CPU matching times, on the order of minutes on a PC, allow such large-scale docking experiments of large molecules, which may not be feasible by other techniques. Proteins 1999;36:307-317.  相似文献   

16.
Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an “acceptable” or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed.  相似文献   

17.
Halperin I  Ma B  Wolfson H  Nussinov R 《Proteins》2002,47(4):409-443
The docking field has come of age. The time is ripe to present the principles of docking, reviewing the current state of the field. Two reasons are largely responsible for the maturity of the computational docking area. First, the early optimism that the very presence of the "correct" native conformation within the list of predicted docked conformations signals a near solution to the docking problem, has been replaced by the stark realization of the extreme difficulty of the next scoring/ranking step. Second, in the last couple of years more realistic approaches to handling molecular flexibility in docking schemes have emerged. As in folding, these derive from concepts abstracted from statistical mechanics, namely, populations. Docking and folding are interrelated. From the purely physical standpoint, binding and folding are analogous processes, with similar underlying principles. Computationally, the tools developed for docking will be tremendously useful for folding. For large, multidomain proteins, domain docking is probably the only rational way, mimicking the hierarchical nature of protein folding. The complexity of the problem is huge. Here we divide the computational docking problem into its two separate components. As in folding, solving the docking problem involves efficient search (and matching) algorithms, which cover the relevant conformational space, and selective scoring functions, which are both efficient and effectively discriminate between native and non-native solutions. It is universally recognized that docking of drugs is immensely important. However, protein-protein docking is equally so, relating to recognition, cellular pathways, and macromolecular assemblies. Proteins function when they are bound to other molecules. Consequently, we present the review from both the computational and the biological points of view. Although large, it covers only partially the extensive body of literature, relating to small (drug) and to large protein-protein molecule docking, to rigid and to flexible. Unfortunately, when reviewing these, a major difficulty in assessing the results is the non-uniformity in the formats in which they are presented in the literature. Consequently, we further propose a way to rectify it here.  相似文献   

18.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

19.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

20.
Molecular docking and virtual screening based on molecular docking have become an integral part of many modern structure-based drug discovery efforts. Hence, it becomes a useful endeavor to evaluate existing docking programs, which can assist in the choice of the most suitable docking algorithm for any particular study. The objective of the current study was to evaluate the ability of ArgusLab 4.0, a relatively new molecular modeling package in which molecular docking is implemented, to reproduce crystallographic binding orientations and to compare its accuracy with that of a well established commercial package, GOLD. The study also aimed to evaluate the effect of the nature of the binding site and ligand properties on docking accuracy. The three dimensional structures of a carefully chosen set of 75 pharmaceutically relevant protein-ligand complexes were used for the comparative study. The study revealed that the commercial package outperforms the freely available docking engine in almost all the parameters tested. However, the study also revealed that although lagging behind in accuracy, results from ArgusLab are biologically meaningful. This taken together with the fact that ArgusLab has an easy to use graphical user interface, means that it can be employed as an effective teaching tool to demonstrate molecular docking to beginners in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号