首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract A detailed understanding of the mechanism of methanol oxidation in bacteria is a prerequisite for the future construction of new strains carrying this trait, or the improvement of industrial processes which employ methylotrophic bacteria. Recent advances in the isolation of mutants and the characterization of cloned genes involved in C1 metabolism have expanded the biochemical data obtained in previous years, and indirectly stimulate research on electron transport and bacterial oxidases. Due to the heterogeneity of the physiology and genetic background of methylotrophs, classical genetic techniques are not readily applicable. The adaptation of these methods requires a detailed understanding of both bacterial metabolism and the principles of the genetic techniques involved. The results obtained to date from a limited number of methylotrophic organisms, using recombinant techniques, may facilitate future research in other organisms that have proved refractory to classical genetic analysis.  相似文献   

2.
Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome c(L), an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome c(L) structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed.  相似文献   

3.
In all bacteria growing on methane or methanol the methanol is oxidised by way of methanol dehydrogenase. This unusual quinoprotein interacts with the electron transport chain at the level of cytochrome c. All methylotrophs having methanol dehydrogenase contain 2 different types of soluble cytochrome c. One of these, but not the other, reacts with methanol dehydrogenase; no intermediate electron carrier is required for this reaction. The P/O ratio for methanol oxidation is 1 although the midpoint redox potential of the methanol/formaldehyde couple suggests that a higher ATP yield might be theoretically possible. Curves are presented that allow the prediction of cell yields, and the effects of altering the system for methanol oxidation, on these cell yields.  相似文献   

4.
甲醇和甲烷等一碳原料来源广泛,价格低廉,是生物制造的理想原料。甲醇脱氢酶(Methanol dehydrogenase,MDH)催化甲醇生成甲醛是一碳代谢的关键反应。目前已从天然甲基营养菌中发现了多种利用不同辅因子,具有不同酶学性质的MDH。其中,烟酰胺腺嘌呤双核苷酸(NAD)依赖型MDH被广泛应用于构建人工甲基营养菌。但是,NAD依赖型MDH的甲醇氧化活性较低,对甲醇的亲和力较差,导致甲醇氧化成为人工甲基营养菌代谢甲醇的限速步骤。为了提高甲醇氧化速率,进而提高人工甲基营养菌的甲醇利用效率,近年来大量研究集中于MDH的挖掘与改造研究。文中系统综述了不同类型MDH的发现、表征、改造以及在人工甲基营养菌中的应用进展,详细阐述了MDH的定向进化和多酶复合体的构建,并展望了通过细胞生长偶联的蛋白质进化和蛋白质理性设计获得高活性MDH的潜在策略。  相似文献   

5.
Obligate methylotrophs are divisible into two types on the basis of ultrastructural biochemical characteristics. Both groups possess a soluble phenazine methosulfate (PMS)-dependent methanol dehydrogenase. In addition, particulate PMS-dependent methanol dehydrogenase and PMS-independent methanol oxidase have been found in the type I membrane group. A procedure was developed for the crystallization of methanol dehydrogenase from the soluble fraction of the type II obligate methylotroph Methylosinus sporium. This is the first report of a crystalline methanol dehydrogenase from a methylotrophic bacterium. The crystallized enzyme is homogeneous as judged by ultracentrifugation and by acrylamide gel electrophoresis. In the presence of an electron acceptor (phenazine or phenazinium compound) and an activator (ammonium compound), the crystallized enzyme catalyzed the oxidation of primary alcohols and formaldehyde. Secondary, tertiary, and aromatic alcohols were not oxidized. The molecular weight of the enzyme as estimated by gel filtration is approximately 60,000, and as estimated by sedimentation equilibrium analysis it is 62,000. The sedimentation constant (S20,W) is 2.9. The subunit size determined by sodium dodecyl sulfate-gel electrophoresis is approximately 60,000. The amino acid composition and spectral properties of the enzyme are also presented. Antisera prepared against the crystalline enzyme are nonspecific, they cross-reacted and inhibited isofunctional enzymes from other obligate methylotrophic bacteria.  相似文献   

6.
Abstract Formate is a substrate, or product, of diverse reactions catalyzed by eukaryotic organisms, eubacteria, and archaebacteria. A survey of metabolic groups reveals that formate is a common growth substrate, especially among the anaerobic eubacteria and archaebacteria. Formate also functions as an accessory reductant for the utilization of more complex substrates, and an intermediate in energy-conserving pathways. The diversity of reactions involving formate dehydrogenases is apparent in the structures of electron acceptors which include pyridine nucleotides, 5-deazaflavin, quinones, and ferredoxin. This diversity of electron acceptors is reflected in the composition of formate dehydrogenase. Studies on these enzymes have contributed to the biochemical and genetic understanding of selenium, molybdenum, tungsten, and iron in biology. The regulation of formate dehydrogenase synthesis serves as a model for understanding general principles of regulation in anaerobic organisms.  相似文献   

7.
Genetics of carbon metabolism in methylotrophic bacteria   总被引:1,自引:0,他引:1  
Abstract The application of genetic techniques to the methylotrophic bacteria has greatly enhanced studies of these important organisms. Two methylotrophic systems have been studied in some detail, the serine cycle for formaldehyde assimilation and the methanol oxidation system. In both cases, genes have been cloned and mapped in Methylobacterium species (facultative serine cycle methanol-utilizers). In addition, methanol oxidation genes have been studied in an autotrophic methanol-utilizer ( Paracoccus denitrificans ) and three methanotrophs ( Methylosporovibrio methanica, Methylomonas albus and Methylomonas sp. A4). Although much remains to be learned in these systems, it is becoming clear that the order of C1 genes has been conserved to some extent in methylotrophic bacteria, and that many C1 genes are loosely clustered on the chromosome. Operons appear to be rare, but some examples have been observed. The extension of genetic approaches to both the obligate and facultative methylotrophs holds much promise for the future in understanding and manipulating the activities of these bacteria.  相似文献   

8.
J. A. Shapiro 《Genetica》1992,86(1-3):99-111
The results of molecular genetics have frequently been difficult to explain by conventional evolutionary theory. New findings about the genetic conservation of protein structure and function across very broad taxonomic boundaries, the mosaic structure of genomes and genetic loci, and the molecular mechanisms of genetic change all point to a view of evolution as involving the rearrangement of basic genetic motifs. A more detailed examination of how living cells restructure their genomes reveals a wide variety of sophisticated biochemical systems responsive to elaborate regulatory networks. In some cases, we know that cells are able to accomplish extensive genome reorganization within one or a few cell generations. The emergence of bacterial antibiotic resistance is a contemporary example of evolutionary change; molecular analysis of this phenomenon has shown that it occurs by the addition and rearrangement of resistance determinants and genetic mobility systems rather than by gradual modification of pre-existing cellular genomes. In addition, bacteria and other organisms have intricate repair systems to prevent genetic change by sporadic physicochemical damage or errors of the replication machinery. In their ensemble, these results show that living cells have (and use) the biochemical apparatus to evolve by a genetic engineering process. Future research will reveal how well the regulatory systems integrate genomic change into basic life processes during evolution.  相似文献   

9.
Formate dehydrogenase   总被引:2,自引:0,他引:2  
Formate is a substrate, or product, of diverse reactions catalyzed by eukaryotic organisms, eubacteria, and archaebacteria. A survey of metabolic groups reveals that formate is a common growth substrate, especially among the anaerobic eubacteria and archaebacteria. Formate also functions as an accessory reductant for the utilization of more complex substrates, and an intermediate in energy-conserving pathways. The diversity of reactions involving formate dehydrogenases is apparent in the structures of electron acceptors which include pyridine nucleotides, 5-deazaflavin, quinones, and ferredoxin. This diversity of electron acceptors is reflected in the composition of formate dehydrogenase. Studies on these enzymes have contributed to the biochemical and genetic understanding of selenium, molybdenum, tungsten, and iron in biology. The regulation of formate dehydrogenase synthesis serves as a model for understanding general principles of regulation in anaerobic organisms.  相似文献   

10.
Methylobacteria are ubiquitous in the biosphere which are capable of growing on C1 compounds such as formate, formaldehyde, methanol and methylamine as well as on a wide range of multi-carbon growth substrates such as C2, C3 and C4 compounds due to the methylotrophic enzymes methanol dehydrogenase (MDH). MDH is performing these functions with the help of a key protein mxaF. Unfortunately, detailed structural analysis and homology modeling of mxaF is remains undefined. Hence, the objective of this research is the characterization and three dimensional modeling of mxaF protein from three different methylotrophs by using I-TASSER server. The predicted model were further optimize and validate by Profile 3D, Errat, Verifiy3-D and PROCHECK server. Predicted and best evaluated models have been successfully deposited to PMDB database with PMDB ID PM0077505, PM0077506 and PM0077507. Active site identification revealed 11, 13 and 14 putative functional site residues in respected models. It may play a major role during protein-protein, and protein-cofactor interactions. This study can provide us an ab-initio and detail information to understand the structure, mechanism of action and regulation of mxaF protein.  相似文献   

11.
Trimethylamine metabolism in obligate and facultative methylotrophs   总被引:13,自引:6,他引:7  
1. Twelve bacterial isolates that grow with trimethylamine as sole source of carbon and energy were obtained in pure culture. All the isolates grow on methylamine, dimethylamine and trimethylamine. One isolate, bacterium 4B6, grows only on these methylamines whereas another isolate, bacterium C2A1, also grows on methanol but neither grows on methane; these two organisms are obligate methylotrophs. The other ten isolates grow on a variety of C(i) and other organic compounds and are therefore facultative methylotrophs. 2. Washed suspensions of the obligate methylotrophs bacteria 4B6 and C2A1, and of the facultative methylotrophs bacterium 5B1 and Pseudomonas 3A2, all grown on trimethylamine, oxidize trimethylamine, dimethylamine, formaldehyde and formate; only bacterium 5B1 and Ps. 3A2 oxidize trimethylamine N-oxide; only bacterium 4B6 does not oxidize methylamine. 3. Cell-free extracts of trimethylamine-grown bacteria 4B6 and C2A1 contain a trimethylamine dehydrogenase that requires phenazine methosulphate as primary hydrogen acceptor, and evidence is presented that this enzyme is important for the growth of bacterium 4B6 on trimethylamine. 4. Cell-free extracts of eight facultative methylotrophs, including bacterium 5B1 and Ps. 3A2, do not contain trimethylamine dehydrogenase but contain instead a trimethylamine monooxygenase and trimethylamine N-oxide demethylase. It is concluded that two different pathways for the oxidation of trimethylamine occur amongst the isolates.  相似文献   

12.
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50 degrees C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs.  相似文献   

13.
Individual and racial differences in response to alcohol and with respect to alcoholism have strong genetic predispositions. Most studies on the actual genetic determinants have concentrated on the isozymes of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), the two enzymes of the primary pathway of alcohol metabolism. Although few "activity" variants (associated with mutations in the structural genes) of the two enzymes are known to exist in susceptible groups, these observations do not offer an adequate explanation for the observed variability in response to alcohols in the population. Some recent studies have reported alterations in the specific activity of the two enzymes following exposure to alcohol for different lengths of time in man, rat, and mice. The induction-repression so observed is hypothesized to be regulated by one or more inducibility genetic elements (IGE) associated with the structural loci of the two enzymes. Variability in IGE will permit a genotype (individual) specific response in ADH and ALDH specific activity when challenged with a given level of alcohol. Considering the relative toxicity of acetaldehyde, the primary metabolite of this pathway, the resistant individuals would be expected to show ALDH induction. Conversely, the susceptible individuals should respond to alcohol by ALDH repression. The ability of an individual to show induction or repression following alcohol ingestion will depend on his or her IGE genotype(s) associated with specific enzyme loci. Also, the degree of polymorphism at these loci would be expected to be extensive and yet population and race specific. Once experimentally established, this approach could have important implications in screening, counselling, prevention, and in novel approaches to treatment.  相似文献   

14.
The interactions of methanol dehydrogenase (MDH, EC1.1.99.8) with its specific electron acceptor cytochrome cL has been investigated in Methylobacterium extorquens and Methylophilus methylotrophus. The MDHs of these two very different methylotrophs have the same alpha 2 beta 2 structure; the interaction of these MDHs with their specific electron acceptor, cytochrome cL, has been studied using a novel assay system. Electrostatic reactions are involved in 'docking' of the two proteins. EDTA inhibits the reaction by a process involving neither metal chelation nor the 'docking' process. Chemical modification studies showed that the two proteins interact by a 'docking' process involving interactions of lysyl residues on MDH and carboxyl residues on cytochrome cL. When 'zero length', two stage cross-linking was done (with proteins from both bacteria), the alpha-subunits of MDH cross-linked with cytochrome cL by way of lysyl groups on MDH and carboxyl groups on the cytochrome. Tuna mitochondrial cytochrome c provided a model for cytochrome cH which is the electron acceptor for cytochrome cL in the 'methanol oxidase' electron transport chain. Tuna cytochrome c was shown to form crosslinked products with carboxyl-modified cytochrome cL. MDH and tuna cytochrome c competed for the same domain on cytochrome cL. It was concluded that MDH reacts with cytochrome cL by an electrostatic reaction which involves carboxyl groups on cytochrome cL and amino groups on the alpha-subunit of MDH. The same domain on cytochrome cL is involved in subsequent 'docking' with its electron acceptor.  相似文献   

15.
Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.  相似文献   

16.
The synthesis of methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase by pink pigmented facultative methylotrophs (PPFM) has been studied during growth on C1 and multicarbon substrates. In batch cultures, the methanol dehydrogenase activities were higher during slow growth on non-C1-compounds than during fast growth on methanol. Derepression of this enzyme also occurred at slow growth in methanol-limited chemostat culture. Formaldehyde dehydrogenase and formate dehydrogenase remained largely repressed during growth on multicarbon substrates.  相似文献   

17.
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.  相似文献   

18.
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.  相似文献   

19.
The genetic variability of alcohol dehydrogenase (C2 isozyme), aldehyde dehydrogenase (A2 isozyme) and aldehyde oxidase (A2 isozyme) has been examined among recombinant inbred strains of mice which have been previously studied concerning their differential behavioural responses towards alcohol. The results showed no correlation between biochemical phenotype for these loci and behavioural response.  相似文献   

20.
Riboswitches and the role of noncoding RNAs in bacterial metabolic control   总被引:1,自引:0,他引:1  
Microorganisms use a plethora of genetic strategies to regulate expression of their genes. In recent years there has been an increase in the discovery and characterization of riboswitches, cis-acting regulatory RNAs that function as direct receptors for intracellular metabolites. Nine classes have been uncovered that together regulate many essential biochemical pathways. Two classes, responding to either glucosamine-6-phosphate (GlcN6P) or glycine, have been found to employ novel mechanisms of genetic control. Additionally, progress has been achieved in elucidating molecular details for regulation by the other riboswitches, via X-ray crystallography and biochemical analyses of riboswitch-metabolite interactions. The complete repertoire of metabolite-sensing RNAs and extent of their usage in modern organisms remains to be determined; however, these current data assist in establishing a foundation from which to build future expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号