首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have recently shown that urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 are both found extracellularly beneath cultured human skin fibroblasts and HT-1080 sarcoma cells, but in distinct localizations. Here, the ultrastructural distribution of u-PA was studied using immunoferritin electron microscopy. In HT-1080 cells, u-PA on the extracellular aspect of the plasma membrane was detected at sites of direct contact of the cell with the growth substratum beneath all parts of the ventral cell surface. The ferritin-labeled adhesion plaques, which were enriched in submembraneous microfilaments, were frequently seen at the leading lamellae of the cells as well as in lamellipodia and microspikes. Besides the cell-substratum adhesion plaques, ferritin label was detected at cell-cell contact sites. Double-label immunofluorescence showed a striking colocalization of u-PA and vinculin in both HT-1080 cells and WI-38 lung fibroblasts, which is consistent with u-PA being a focal contact component. The u-PA-containing focal contacts of WI-38 cells had no direct codistribution with fibronectin fibrils. In WI-38 cells made stationary by cultivation in a medium containing 0.5% FCS, vinculin plaques became highly elongated and more centrally located, whereas u-PA immunolabel disappeared from such focal adhesions. These findings show that plasma membrane-associated u-PA is an intrinsic component of focal contacts, where, we propose, it enables directional proteolysis for cell migration and invasion.  相似文献   

2.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

3.
Phosphoinositide-specific phospholipase C (PI-PLC) is a key signal transducing enzyme which generates the second messengers inositol trisphosphate and diacylglycerol in mammalian cells. A cDNA clone (PI-PLC1) encoding a phosphoinositide-specific phospholipase C was isolated from soybean by screening a cDNA expression library using an anti-(plasma membrane) serum. Genomic DNA gel blot analysis suggested that the corresponding gene is a member of a multigene family. The deduced amino acid sequence of the soybean PI-PLC1 isozyme contains the conserved X and Y regions, found in other PI-PLCs. It is closely related to mammalian δ-type PI-PLCs, Dictyostelium discoideum PI-PLC and yeast PI-PLC1 in terms of the arrangement of the conserved region. Unlike mammalian δ-type PI-PLCs and yeast PI-PLC1, the putative Ca2+-binding site of the soybean PI-PLC1 is located in the region spanning the X and Y domains, and the N-terminal region is truncated. FLAG epitope-tagged PI-PLC1 fusion protein purified from transgenic tobacco plants showed phosphoinositide-specific phospholipase C activity. Heterologous expression of the soybean PI-PLC1 cDNA in a yeast PI-PLC1 deletion mutant complemented the lethality phenotype of haploid PI-PLC1 disruptants. Immunoblot analysis of the cell fractions prepared from transgenic tobacco plants over-expressing the FLAG epitope-tagged PI-PLC1 fusion protein indicated that the protein encoded by the PI-PLC1 cDNA was localized in the cytosol and plasma membrane.  相似文献   

4.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

5.
Plasminogen activator activity was detected in human gynecologic specimens using a synthetic fluorogenic peptide substrate assay and confirmed by an 125I-labeled fibrin plate assay. Epithelial cells in these samples contain enzymatic activity that biochemically resembles both the well-characterized plasminogen activator, urokinase, and the less-specific plasminogen activator, trypsin. Inhibition of the cervical cell activity by diisopropylfluorophosphate and p-nitrophenyl-p'-guanidinobenzoate demonstrates that, like urokinase and trypsin, this plasminogen activator is also a serine protease. Polyacrylamide gel electrophoresis of plasminogen that had been incubated with cervical cells indicated the same mechanism of plasminogen activation as exhibited by urokinase. We attempted to correlate plasminogen activator activity of each sample with cytomorphologic diagnosis. Three of the four dysplastic samples analyzed showed higher plasminogen activator activity than did the normal samples.  相似文献   

6.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

7.
Human recombinant single chain urokinase-type plasminogen activator (recombinant scu-PA) and a hybrid between human tissue-type plasminogen activator (t-PA) and scu-PA, obtained by ligation of cDNA fragments encoding the NH2-terminal region (amino acids 1-67) of t-PA and the COOH-terminal region (amino acids 136-411) of scu-PA, were expressed in a mammalian cell system. The proteins were purified from conditioned culture media containing 2% fetal calf serum by chromatography on zinc chelate-Sepharose, immunoadsorption chromatography on an insolubilized murine monoclonal antibody directed against urokinase, benzamidine-Sepharose chromatography, and Ultrogel AcA 44 gel filtration. Between 180 and 230 micrograms of the purified proteins were obtained per liter of conditioned medium, with a yield of approximately 18% and a purification factor of 720-1900. On sodium dodecyl sulfate gel electrophoresis under reducing conditions, the proteins migrated as single bands with approximate Mr 50,000 for recombinant scu-PA and Mr 43,000 for the t-PA/scu-PA hybrid. Following conversion to urokinase with plasmin, the proteins had a specific amidolytic activity comparable to that of natural scu-PA. Both proteins activated plasminogen directly with Km = 0.53 and 1.4 microM and k2 = 0.0034 and 0.0027 s-1, respectively. Both proteins did not bind specifically to fibrin and had a comparable degree of fibrin selectivity as measured in a system composed of a whole human 125I-fibrin-labeled plasma clot suspended in human plasma. It is concluded that this chimeric protein, consisting of the NH2-terminal "finger-like" domain of t-PA and the COOH-terminal region of scu-PA, has very similar enzymatic properties as compared to scu-PA, but has not acquired the fibrin affinity of t-PA.  相似文献   

8.
A recombinant chimeric plasminogen activator (GHRP-scu-PA-32K), consisting of the tetrapeptide Gly-His-Arg-Pro fused to the N-terminus of the low-molecular single-chain urokinase-type plasminogen activator (Leu144-Leu411), was produced by expression in CHO cells. The stable expression cell line was selected for large-scale expression. The product was purified by antibody-Sepharose affinity chromatography with a recovery of 67%. The apparent molecular weight of purified GHRP-scu-PA-32K was 33 kDa according to SDS-PAGE. Its specific activity was 150000 IU/mg protein according to fibrin plate determination. The conversion of single-chain to two-chain molecules mediated by plasmin was comparable for GHRP-scu-PA-32K (K(m)=4.9 microM, k(2)=0.35 s(-1)) and scu-PA-32K. The activation of plasminogen by GHRP-scu-PA-32K (K(m)=1.02 microM, k(2)=0.0028 s(-1)) was also similar to that of scu-PA-32K. The fibrin binding of GHRP-scu-PA-32K was 2.5 times higher than that of scu-PA-32K at a fibrin concentration of 3.2 mg/ml. In contrast to scu-PA-32K in vitro 125I-fibrin-labeled plasma clot lysis, GHRP-scu-PA had a higher thrombolytic potency, whereas it depleted less fibrinogen in plasma. These results show that GHRP-scu-PA-32K as expected is a potential thrombolytic agent.  相似文献   

9.
A chemical modification of single-chain urokinase-type plasminogen activator (scu-PA) with phenylglyoxal under mild conditions resulted in the scu-PA derivatives with various numbers of the modified Arg residues. The study of properties of the resulting derivatives demonstrated that the modification of 4-12 Arg residues did not cause any loss of the activator, fibrinolytic, and potential amidase activities of the activator. The scu-PA with four modified Arg residues was found to be the most stable derivative in human blood plasma; it causes a more efficient lysis of plasma clots than the native activator. Three of four modified Arg residues are supposed to be within the 178RRHRGGS184 cluster, which was localized in the superficial loop of the scu-PA globule and was shown to interact with the complementary series of negatively charged residues in the molecule of the main plasma inhibitor PAI-1. The neutralization of positively charged Arg residues in this cluster decreases the affinity of scu-PA and the double chain urokinase-type plasminogen activator for PAI-1, which results in an enhancement of the stability in plasma and the fibrinolytic efficiency of the activator. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

10.
11.
Tissue plasminogen activator (tPA) is a serine protease involved in the degradation of blood clots through the activation of plasminogen to plasmin. Here we report on the identification of tPA as a specific protease able to activate platelet-derived growth factor C (PDGF-C). The newly identified PDGF-C is secreted as a latent dimeric factor (PDGF-CC) that upon proteolytic removal of the N-terminal CUB domains becomes a PDGF receptor alpha agonist. The CUB domains in PDGF-CC directly interact with tPA, and fibroblasts from tPA-deficient mice fail to activate latent PDGF-CC. We further demonstrate that growth of primary fibroblasts in culture is dependent on a tPA-mediated cleavage of latent PDGF-CC, generating a growth stimulatory loop. Immunohistochemical analysis showed similar expression patterns of PDGF-C and tPA in developing mouse embryos and in tumors, indicating both autocrine and paracrine modes of activation of PDGF receptor-mediated signaling pathways. The identification of tPA as an activator of PDGF signaling establishes a novel role for the protease in normal and pathological tissue growth and maintenance, distinct from its well-known role in plasminogen activation and fibrinolysis.  相似文献   

12.
A plasminogen activator has been recovered from human postexercise blood plasma by chromatography on lysine coupled to Sepharose 4B. Plasminogen activator activity was unstable in citrated plasma but could be stabilized by addition of 5 mm EDTA and 5 mm benzamidine. Stabilized postexercise plasma was applied to lysine-Sepharose and the bulk of the protein washed from the column with a gradient in NaCl (0–0.6 m). The activator was then eluted with 1.5 m NaCl or with linear gradients in l-lysine (0–20 mm) or l-arginine (0–0.2 m). The activator was purified approximately 5000-fold over the starting plasma and was well separated from plasminogen and plasmin inhibitors. It caused no lysis on plasminogenfree fibrin-agar plates. The activator activity was inhibited by diisopropylphosphorofluoridate, ?-aminocaproic acid, and lysine but not by soybean trypsin inhibitor, Trasylol or blood plasma with or without heparin present. A plasminogen activator isolated from homogenized human vein by identical chromatography on lysine-Sepharose showed the same inhibition profile. This suggested that the activator recovered from postexercise human plasma was released from the blood vessel walls. Incorporation studies with [32P]-diisopropylphosphorofluoridate indicated that the enzyme displays over 30,000 Committee on Thrombolytic Agents units/mg of protein. This high potency combined with the activator's resistance to plasma inhibitors suggests that it may be of importance to in vivo fibrinolysis.  相似文献   

13.
The fibrinolytic system was investigated in 38 patients (21 males and 17 females) affected by type 1 diabetes mellitus (18 free from complications, 10 with retinopathy, and 10 with autonomic neuropathy) and in 8 healthy controls. Two separate fibrinolysis-stimulating tests were done: standardized venous occlusion and 1-desamino-8-D-arginine vasopressin infusion. Plasma tissue plasminogen activator antigen and activity and plasma plasminogen activator inhibitor activity were measured. All the patients were in good metabolic control (mean HbA1c 7.4%, range 6.1-8.0%). No significant differences were observed either between the diabetic patients and the control subjects, nor among the subgroups of diabetic patients. The fibrinolytic system is probably not involved in type 1 diabetes mellitus.  相似文献   

14.
To study structure/function relationships of tissue plasminogen activator (t-PA) activity, one of the simplest modified t-PA structures to activate plasminogen in a fibrin-dependent manner was obtained by constructing an expression vector that deleted amino acid residues 4-175 from the full-length sequence of t-PA. The expression plasmid was introduced into a Syrian hamster cell line, and stable recombinant transformants, producing high levels of the modified plasminogen activator, were isolated. The resulting molecule, mt-PA-6, comprising the second kringle and serine protease domains of t-PA, produced a doublet of plasminogen activator activity having molecular masses of 40 and 42 kDa. The one-chain mt-PA-6 produced by cultured Syrian hamster cells was purified in high yield by affinity and size exclusion chromatography. The purified mt-PA-6 displayed the same two types of microheterogeneity observed for t-PA. NH2-terminal amino acid sequencing demonstrated that one-chain mt-PA-6 existed in both a GAR and a des-GAR form. Purified mt-PA-6 also existed in two glycosylation forms that accounted for the 40- and 42-kDa doublet of activity produced by the cultured Syrian hamster cells. Separation of these two forms by hydrophobic interaction chromatography and subsequent tryptic peptide mapping demonstrated that both forms contained N-linked glycosylation at Asn448; in addition, some mt-PA-6 molecules were also glycosylated at Asn184. Plasmin treatment of one-chain mt-PA-6 converted it to a two-chain molecule by cleavage of the Arg275-Ile276 bond. This two-chain mt-PA-6, like t-PA, had increased amidolytic activity. The fibrinolytic specific activities of the one- and two-chain forms of mt-PA-6 were similar and twice that of t-PA. The plasminogen activator activity of one-chain mt-PA-6 was enhanced greater than 80-fold by CNBr fragments of fibrinogen, and the one-chain enzyme lysed human clots in vitro in a dose-dependent manner. The ability to produce and purify a structurally simple plasminogen activator with desirable fibrinolytic properties may aid in the development of a superior thrombolytic agent for the treatment of acute myocardial infarction.  相似文献   

15.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

16.
Cell surface binding sites for the constituent proteins of the fibrinolytic system may play a role in the localization and regulation of fibrinolysis. In the present study, specific binding of recombinant human tissue-type plasminogen activator (rt-PA) to human blood platelets was identified and characterized. 125I-labeled rt-PA was found to bind specifically, saturably, and reversibly to the surface of gel-filtered platelets, reaching equilibrium within 5 min at 22 degrees C. Scatchard analysis revealed a single class of binding sites. Unstimulated platelets bound 120,000 +/- 24,000 (mean +/- S.D.) molecules/platelet with an apparent Kd of 340 +/- 25 nM, whereas thrombin-stimulated platelets bound 290,000 +/- 32,000 molecules/platelet with an apparent Kd of 800 +/- 60 nM. Binding of 0.1 microM 125I-rt-PA was greater than 90% reversible by a 50-fold excess of unlabeled rt-PA. Binding was not inhibited by fibrinogen or single chain urokinase-type plasminogen activator, but plasminogen partially competed for binding of 125I-rt-PA to platelets (up to 40% displacement). These findings indicate that the platelet surface possesses a large number of specific, low affinity binding sites for t-PA and provide further evidence for the role of platelets in localization and regulation of fibrinolysis.  相似文献   

17.
Human urokinase-type plasminogen activator (uPA) binds rapidly and with high affinity to a number of human cell types; this localizes plasmin generation to the close environment of the cell surface. uPA binding to HeLa and U937 cells is mediated by a single class of sites with an affinity of 3.4 +/- 1.3 x 10(-10) M. Binding is abolished by treatment of the cells with trypsin. Chemical cross-linking of Mr 55,000 125I-uPA to the surface of HeLa and U937 cells with disuccinimidyl suberate or with formaldehyde results in the formation of a labeled complex of Mr 100,000, suggesting a Mr of 45,000 +/- 5,000 for the receptor or a subunit thereof. When cells solubilized in Triton X-114 are subjected to heat-induced phase separation, unoccupied receptor, receptor-bound 125I-uPA, and cross-linked 125I-uPA-receptor complex all partition in the detergent phase, whereas the unbound ligand remains in the aqueous phase; similar phase partitioning is observed with endogenous uPA-receptor complexes from cultured human and murine cells. Thus, uPA bound at the cell surface is tightly associated with an amphiphilic membrane protein. Interaction of uPA with this plasma membrane receptor is species-specific, since human uPA fails to bind to murine cells, and murine uPA does not bind to human cells. Finally, incubation of HeLa cells in the presence of epidermal growth factor or phorbol 12-myristate 13-acetate results, over a period of 24 h, in a progressive change in uPA binding: an approximately 10-fold increase in the number of sites is accompanied by a 10-fold decrease in their affinity. Cross-linking and phase partitioning of 125I-uPA bound to epidermal growth factor- or phorbol 12-myristate 13-acetate-treated cells indicate that, as in control conditions, it is associated with a Mr 45,000 cell surface amphiphilic polypeptide.  相似文献   

18.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

19.
Mouse cerebellar cells in culture secrete tissue plasminogen activator (tPA) into the culture medium. Fibrin overlays have shown tPA to be associated with granule neurons in these cultures. This cell associated tPA can be displaced by extensive washing of the cells or by a brief lowering of the pH (less than 4), which leads to a loss of fibrinolytic activity by the cells. Incubation of these fibrinolytically inactive cells with exogenously added murine tPA leads to the restoration of the fibrinolytic activity, indicating the presence of tPA binding sites on these granule neurons. Using 125I-tPA, the binding to cerebellar granule neurons is rapid, saturable, specific, high affinity (Kd = 50 pM) and reversible. Both murine and human tPA compete with 125I-tPA for binding, with both murine and human urokinase (uPA) as well as human thrombin and plasminogen fail to compete. Neither the catalytic site nor the carbohydrate moiety of tPA appear to be involved in the binding, since both diisopropyl-fluorophosphate-treated tPA and endoglycosidase-H-treated tPA compete with 12I-tPA for binding. Furthermore, epidermal growth factor does not compete well with tPA for binding even at a 10:1 molar excess, suggesting that the epidermal growth factor-like (EGF) domain of tPA may not be involved in the binding mechanism. Autoradiography and antibody immunofluorescence show the specific tPA binding is to granule neurons in these cultures. Thus, granule neurons possess tPA receptors on their surface, where this protease binds retaining is functional activity and may play a role in cell and axon migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号