首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of the glucocorticoid dexamethasone to adrenalectomized rats significantly decreased the serum zinc concentration within 14 hr. Dexamethasone did not detectably alter the liver zinc content, but markedly increased the proportion of zinc associated with liver metallothionein. The rate of incorporation of 35S-cystine into this protein was stimulated to a maximal extent 7 hr after administration of the glucocorticoid. Poly(A)+ mRNA from liver polysomes was isolated and translated in a cell-free protein synthesizing system. Nearly twice as much polysomal metallothionein mRNA was found 7 hr following treatment with dexamethasone. These results suggest that glucocorticoids can regulate the plasma zinc concentration by a process that is related to the biosynthesis of the hepatic zinc-binding protein, metallothionein.  相似文献   

2.
We have used translation in vitro of hepatic polyadenylated RNA to characterize the levels of metallothionein mRNA in foetal, neonatal, pregnant and nulliparous rats. The translation products of foetal hepatic metallothionein mRNA increased relative to other mRNA translation products from day 18 of gestation to birth and attained a maximum, maintained throughout suckling, which is tenfold above 17-day foetal hepatic levels and fourfold above adult levels. Maternal liver metallothionein mRNA decreased fivefold between 17 days and 20 days of gestation, rose sharply immediately before birth, and was low throughout lactation.  相似文献   

3.
This study investigated whether hepatic metallothionein gene expression is affected by dietary cyclodextrins. Young male Wistar rats were fed a basal diet or cyclodextrin-supplemented (50 g of cyclodextrin per kg diet) diets for 7 d. Copper content in the liver did not show any significant changes among rats fed the basal, beta- and gamma-cyclodextrin diets. There were no differences in liver or serum zinc among groups. Copper content in serum was markedly decreased in rats fed the gamma-cyclodextrin-supplemented diet. Liver metallothionein mRNA levels were significantly elevated in both beta- and gamma-cyclodextrins-fed rats, but not in alpha-cyclodextrin-fed rats. Thus, the increase in hepatic metallothionein mRNA levels might be due to this mechanism except for the contents of copper and zinc in the liver.  相似文献   

4.
5.
By electrophoretic and immunological assay the concentration of hepatic metallothionein in new born chick liver was found to be ontogenically modulated, reaching a peak accumulation per gram liver in fourth day of hatching and declining below the detection limit after second week postnatal. The protein was undetectable upto second week of incubation in egg-embryonic stage. The concentration of metallothionein mRNA shows drastic change during first few days after hatching. The greatest accumulation of metallothionein mRNA was detected in the one day new born chicks, which declined rapidly there after, and reduced to a barely detectable level. Metallothionein was also detected in the in vitro translated product of one day neonatal chick hepatic poly(A+) RNA by S-cysteine labelling and immunoprecipitation. The naturally occurring new-born chick liver metallothionein was found to be a zinc-metallothionein and the concentration of hepatic zinc in new-born chick was found to undergo drastic modulation during development, unlike some other chick tissues. Endogenous zinc ion mobilization can thus play a significant role in the developmental regulation of chick metallothionein expression.  相似文献   

6.
Cadmium is a toxic metal that induces the expression of metallothionein genes in many tissues and that binds avidly to metallothionein, a soluble transition metal binding protein. The present study examined the temporal pattern and magnitude of accumulation of metallothionein mRNA in liver of C57BL/6J mice of various ages treated with cadmium. In adult female mice, accumulation was dependent on the dosage level of cadmium and related to the concentration of this metal in liver. The accumulation of metallothionein mRNA in liver depended on age at exposure to cadmium. Intraperitoneal administration of 2 mg of cadmium per kg provoked small increases (two- to threefold) in levels of metallothionein mRNA in livers of 7- and 14-day-old mice. In contrast, cadmium treatment of 28- and 56-day-old mice resulted in 12- to 19-fold increases in levels of metallothionein mRNA in liver with maximum increases occurring 3 to 4 hr after treatment. Because similar patterns for the accumulation of cadmium of liver were found in 7-, 28-, and 56-day-old mice, observed age-dependent differences in induction of metallothionein mRNA in liver were probably not due to differences in the accumulation of cadmium in this organ. Taken together, these data suggest that tissue-specific factors controlling the expression of metallothionein genes may account for developmental variation in the inducibility of these genes by cadmium. Ontogenic variation in accumulation of metallothionein mRNA after cadmium treatment may be a factor in developmental variation in the acute lethality of cadmium in C57BL/6J mice.  相似文献   

7.
Interleukin-1 (IL-1) causes changes in zinc metabolism which have been attributed to mediation, at least in part, by glucocorticoids. However, IL-1 was found to actually lower serum corticosterone levels in rats. In addition, adrenalectomy only partially inhibited the ability of IL-1 to depress serum zinc levels and increase the amount of zinc associated with hepatic metallothionein. Furthermore, IL-1 increased total liver metallothionein protein to similar levels in both adrenalectomized and normal rats. Administering the synthetic glucocorticoid dexamethasone with IL-1 to adrenalectomized rats produced additive, but not synergistic effects on serum zinc and metallothionein concentrations. Studies with actinomycin D suggested that IL-1 induction of metallothionein might involve glucagon.  相似文献   

8.
Amounts of hepatic metallothionein mRNA were assessed in RNA from foetal and neonatal rat livers by using dot-blot hybridization. Metallothionein mRNA began to increase about day 15 of gestation and reached a foetal maximum of 5-fold higher than adult values between 18 and 21 days of gestation. The amounts fell significantly for the first 3 days after parturition, and rose again to 6-fold above adult values 6 days after birth. By 15 days after birth the metallothionein mRNA had declined to adult amounts. In comparison, amounts of ornithine transcarbamoylase mRNA did not vary greatly during development. Hepatic zinc concentrations increased from day 14 of gestation to a maximum just before birth, and remained above adult values until 30 days after birth. From 14 days of gestation to 8 days after birth, hepatic copper concentrations were about 4-fold higher than in the adult, but a substantial increase (to about 9-fold higher than in the adult) occurs between 10 and 15 days after birth. CdCl2 administered to pregnant rats on day 18 of gestation was shown to block placental transfer of zinc, and we found decreased foetal hepatic zinc concentration after the CdCl2 treatment, but this failed to cause a significant decrease in metallothionein mRNA, suggesting that zinc may not be the primary inducer of hepatic metallothionein mRNA during foetal life.  相似文献   

9.
Female broiler chicks receiving an ip injection of Fe (10 mg/kg bw) were found to have a greatly increased level of hepatic metallothionein. The increase in metallothionein was not correlated with changes in serum corticosterone. Attempts to vary serum corticosterone levels by feeding metyrapone, an 11-β steroid hydroxylase inhibitor, were unsuccessful.  相似文献   

10.
In vitro studies have suggested that sporidesmin hepatotoxicity may be related to thiol oxidation and generation of cytotoxic oxygen species. After a single i.p. injection of 2.8 mg/kg bw sporidesmin in guinea-pigs, hepatic and plasma zinc, hepatic metallothionein, cytochromes P-450 and b5, total glutathione and proteins (total, microsomal and cytosolic) were monitored for 21 days. The only variations observed were significant increases in liver concentrations of zinc (cytosolic and total), metallothionein, and cytochromes, which peaked on day 8 after the sporidesmin challenge (+45, 55, 50, 376 and 413%, respectively) and, except for cytochrome b5, went back to control levels before the 21st day. These results suggest that cytochromes P-450 and b5 may be involved in sporidesmin cellular damage.  相似文献   

11.
Regulation of the ontogeny of rat liver metallothionein mRNA by zinc   总被引:1,自引:0,他引:1  
To investigate the role of metals in the regulation of the ontogenic expression of rat liver metallothionein (MT) mRNA, the concentrations of zinc, MT and MT mRNA were determined in livers of fetal and newborn rats from dams which were fed with a control or zinc-deficient or copper-deficient or iron-deficient diet from day 12 of gestation. The liver samples were analyzed for MT-mRNA levels using a mouse MT-I cRNA probe. Although the newborn hepatic levels of each metal (zinc or copper or iron) was specifically reduced corresponding to the respective mineral deficiencies, the hepatic concentrations of total MT and MT-I mRNA were significantly decreased only in pups born from zinc-deficient dams. Injection of the zinc-deficient newborn pups with 20 mg Zn as ZnSO4/kg restored with MT-I mRNA levels to slightly above control values within 5 h of injection. The hepatic zinc, MT and MT-I mRNA levels were observed to increase significantly in control fetal rat liver on days 17-21 of gestation but there were little changes in either zinc or MT in fetal livers from zinc-deficient dams during the late gestational period. The MT-I mRNA level also did not show an increase on days 18 and 20 of gestation in zinc-deficient fetal liver as compared to controls. These results demonstrate a direct role of zinc in hepatic MT gene expression in rat liver during late gestation. Immunohistochemical localization of MT using a specific antibody to rat liver MT showed that the staining for MT in zinc-deficient pup liver was mainly in the cytosol in contrast to the significant nuclear MT staining observed in control newborn rat liver. The results suggest that maternal zinc deficiency has a marked effect not only in decreasing the levels of hepatic MT and MT-I mRNA but also in the localization of MT in newborn rat liver.  相似文献   

12.
The process(es) by which parenteral iron effects the accumulation of hepatic metallothionein (MT) is not known. The present study examined glucocorticoids as potential mediators of this process. Chicks were given either one injection (ip) of iron (+1FE) at 10 mg Fe/kg, two injections of iron (+2FE) given 24 hr apart, or a single injection of saline. Plasma corticosterone was evaluated at various times following the last injection. Plasma corticosterone increased approximately 50% following +1FE but more than 200% at 2 and 4 hr following a second injection of iron (+2FE). Plasma zinc showed a transient increase followed by a considerable depression. Coincidentally, the accumulation (determined at 24 hr) of zinc MT in liver of +2FE chicks was three times higher than that of +1FE chicks. In another experiment, markedly greater changes, at similar time intervals, in plasma corticosterone were effected by multiple subcutaneous injections of adrenocorticotropic hormone (ACTH) (either 5 IU ACTH or 20 IU ACTH/kg). Subsequent analysis of hepatic zinc MT showed only minor changes as a result of ACTH injections. These results indicate that a change in the plasma glucocorticoid corticosterone is not a primary component in the process(es) by which parenteral iron effects an increase in hepatic zinc MT.  相似文献   

13.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

14.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

15.
1. The accumulation of cadmium in the liver, kidney and gills of rainbow trout and stone loach was measured during exposure of the fish to the metal at 3 smg/l in their aquarium water. The pattern of accumulation of the toxic metal in the individual organs was different between the two species.2. The tissue concentrations of metallothionein-specific mRNA and metallothionein protein were also determined in these organs from the same fish. In rainbow trout, the induction of metallothionein gene expression resulted in a gradual increase in metallothionein concentration in gill over the course of the experiment whereas increases in metallothionein in the liver and kidney were detected only at the later time points of analysis (beyond 19 weeks). By contrast, in the same tissues from stone loach, relatively minor changes were quantified in specific mRNA and metallothionein concentrations.3. Throughout the experimental period, tissue concentrations of zinc and copper were determined in the liver, kidney and gills of the rainbow trout and stone loach. Subtle decreases were observed in the zinc concentration of gills in rainbow trout and substantial increases were observed in the hepatic copper concentrations in both species at the later time points of analysis.4. The ability of cadmium to induce metallothionein gene expression and its subsequent ability to compete for the sequestration sites on the newly-synthesized protein is discussed with regard to the relative levels of cadmium, zinc and copper in the organs studied and differing regimes of cadmium administration.  相似文献   

16.
Total, membrane-bound and free polyribosomes were purified from livers of Zn2+-treated and control rats. Polyadenylated RNA was separated from the polyribosomal RNA extracts by oligo(dT)--cellulose chromatography and translated in a wheat-germ cell-free translation system. Newly synthesized 35S-labelled metallothionein was isolated from the other [35S]methionine-labelled translation products by activated-thiol--Sepharose 4B chromatography. The purity of the 35S-labelled metallothionein product was substantiated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Zinc administration resulted in an elevation of metallothionein mRNA activity to 11% of the total polyribosomal mRNA activity. The vast majority of biologically active metallothionein mRNA was localized in the free polyribosomal pool, at least 94% and 97% in control and zinc-treated rats respectively. The increase in the percentage of polyribosomal mRNA coding for metallothionein after zinc administration was 3-fold, whether measured directly in total polyribosomal mRNA or as a combination derived from membrane-bound and free polyribosomal mRNA. These data indicate that the induction of metallothionein mRNA by zinc involves only free polyribosomes and suggest that the function of metallothionein is limited to intracellular processes.  相似文献   

17.
The kinetics of the increase of metallothionein mRNA in rat liver and kidney after CuCl2 injection was determined by cell-free translation and dot-blot hybridization of total RNA isolated at various times after the injection. Both assay procedures gave essentially the same result: a 16-fold increase in hepatic metallothionein mRNA was observed 7h after CuCl2 injection, with a decline to basal values by 15 h. The response in the kidney was less dramatic, with a 6-fold increase in metallothionein mRNA 5 h after injection, and basal values were attained by 12h. The rise in Cu2+ concentration in both organs was closely correlated with the increase in metallothionein mRNA; hepatic Cu2+ was increased 5.9-fold by 5h after injection and renal Cu2+ was increased 4.3-fold 5h after injection. The Zn2+ concentration in the liver had not risen significantly within 5h of Cu2+ injection. Renal Zn2+ concentrations did not alter appreciably in the Cu2+-treated animals. These results support the conclusion that Cu2+ is acting as a primary inducer of metallothionein mRNA in the rat.  相似文献   

18.
The concentrations of zinc, copper, metallothionein and metallothionein-Ia mRNA in sheep livers during development was determined. It was found that early sheep foetuses (30-40 days gestation) had very high concentrations of hepatic zinc (2305 +/- 814 micrograms/g dry mass), and that these levels declined steadily to 644 +/- 304 micrograms/g near to term. The copper concentrations in the foetal livers were not higher than those in the adult. The concentrations of metallothionein and metallothionein-Ia mRNA were also very high in the foetal livers and declined steadily during gestation from 261 +/- 94 molecules/pg RNA to 71 +/- 18 molecules/pg near to term. Metallothionein-Ia mRNA concentrations were closely correlated with hepatic zinc concentrations but not with copper. Metallothionein concentrations also decreased during gestation: e.g. 3044 micrograms/g (wet mass) in one foetus on day 34 of gestation to 862 micrograms/g on day 125. After birth, however, the concentrations of metallothionein declined to less than 100 micrograms/g and this decline occurred despite the presence of significant quantities of mRNA. The ratio of metallothionein/metallothionein-Ia mRNA decreased from 1.3 to 3.2 x 10(5) molecules metallothionein/molecule of metallothionein-Ia mRNA during gestation to between 0.28-0.64 x 10(5) molecules/molecule in the postnatal animals. We conclude that the major function of metallothioneins in the foetal liver is protection of the liver against the potentially toxic accumulation of zinc. In the postnatal sheep there appears to be a decreased synthesis or increased degradation of metallothionein.  相似文献   

19.
It is well known that excess dietary histidine induces the metabolic changes in copper and zinc. Therefore, this study was carried out to clarify whether excess dietary histidine alters the gene expressions of metallothionein-1 and metallothionein-2 in the liver and kidney. Male rats were fed the control (ad libitum and pair-fed) or histidine-excess (50 g of L-histidine per kg of diet) diet for 0, 1 and 3 days. The levels of liver metallothionein-1 and metallothionein-2 mRNA were markedly lower in the rats fed the histidine-excess diet as compared to those of the control (ad libitum and pair-fed) diet, when fed for 1 or 3 days. The levels of renal metallothionein-1 and metallothionein-2 mRNA in the rats fed the histidine-excess diet were higher or tended to be higher as compared with the rats fed the control (ad libitum and pair-fed) diet when fed for 1 or 3 days, respectively. At the same time, hepatic copper content was decreased and renal zinc content was increased by dietary histidine. It thus appears, that such a response on the level of liver metallothionein mRNA might be related to the contents of liver copper, but of kidney metallothionein mRNA might be due to the content of zinc.  相似文献   

20.
目的:观察不同锌水平对体外应激海马神经元金属硫蛋白(MTs)亚型表达的影响。方法:取新生1dWis-tar大鼠海马组织进行体外神经元培养,无血清培养24h后,分别向培养液中加入皮质酮、Zn2+特异鳌合剂TPEN,使二者的最终浓度均为1×10-5mol/L,然后加入不同浓度的ZnSO4溶液,使Zn2+的最终浓度分别为1×10-5mol/L、1×10-4mol/L和2×10-4mol/L,作用24h后检测培养液中IL-6和NO含量,以蛋白印迹法检测细胞MTs含量,以RT-PCR检测细胞MT-1mRNA和MT-3mRNA的表达水平。结果:在海马神经元培养液中加入TPEN后,MTs的表达出现明显降低,皮质酮刺激也未见其表达升高。在补锌组,MTs的含量均明显增加,其中以10-4mol/LZn2+组的表达量最高。海马神经元MT-1mRNA和MT-3mRNA的表达水平在皮质酮应激组和补锌组均出现明显升高。另外,锌缺乏和皮质酮刺激可使海马神经元培养上清中的IL-6和NO水平均出现明显升高。结论:不同锌水平对应激海马神经元金属硫蛋白及其亚型mRNA的表达具有调控作用,缺锌可降低金属硫蛋白的表达,而补锌可增加金属硫蛋白的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号