首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two new species of Ligia are described, L. persica sp. nov. from the Persian Gulf and L. yemenica sp. nov. from the Gulf of Aden. Ligia persica occurs along the northern coasts of the Persian Gulf and around some Iranian islands such as Qeshm and Kish. A comparison of SEM micrographs shows that the shape and ornamentation of distal parts of the appendix masculina are reliable characters for the identification of morphologically similar Ligia species. They are species-specific and of great importance in the taxonomy of the genus.  相似文献   

2.
The polymorphism of the mitochondrial DNA (mtDNA) control region sequence was examined in 30 polar foxes from Bering Island and 30 polar foxes from Mednyi Island. Seven haplotypes were revealed in polar foxes from Bering Island, and one, in polar foxes from Mednyi Island. The age of divergence of these populations (12 000 +/- 600 years) was calculated based on a fragment of the D-loop. In Bering polar foxes, the sequence nucleotide diversity (pi) was 0.003 (S.D. = 0.002), the haplotype diversity h in Bering polar foxes was 0.835 (S.D. = 0.037). The effective number of females n the Bering Island population was estimated as 105 animals.  相似文献   

3.
Mitochondrial haplotype diversity in seven Portuguese populations of brown trout, Salmo trutta L., was investigated by sequencing the 5' end of the mitochondrial DNA (mtDNA) control region. Five new haplotypes were described for this species, each two to three mutational steps distant from the common north Atlantic haplotype. Significant population subdivision of mtDNA haplotypes was also apparent. Based on these results, as well as on published data describing the distribution of both mtDNA haplotypes and allozyme alleles throughout Europe, the postglacial recolonization of northern Europe was re-evaluated. It is argued that the available data do not support the contribution of two major glacial refugia (southwest Atlantic and Ponto-Caspian Basin) to this postglacial recolonization, as proposed in a recently published model. The unique genetic architecture of Portuguese brown trout within the Atlantic-basin clade of this species represents a highly valuable genetic resource that should be protected from introgression with nonendemic strains of hatchery fish.  相似文献   

4.
The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D‐loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high‐frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low‐frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.  相似文献   

5.
Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 10(1) to 10(4), but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty-nine mtDNA nucleotide-substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2-5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide-substitution haplotypes and length-variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once-glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five-region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.  相似文献   

6.
Habitat fragmentation and destruction associated with the rapid urban and rural development of southeast Queensland presents an immediate threat to the survival of koala populations within this region. A sensitive method combining heteroduplex analysis (HDA) with temperature gradient gel electrophoresis (TGGE) was optimized to detect within-species variation in a mitochondrial DNA (mtDNA) control-region fragment, approximately 670 bp in length, from the koala. Eight different haplotypes were characterized in koalas, of which four were novel. Analysis of mtDNA diversity in 96 koalas from five populations in southeast Queensland revealed that the number of haplotypes in a single population ranged from one to five, with an average within-population haplotype diversity of 0.379 +/- 0.016, and nucleotide diversity of 0.22 +/- 0.001%. Nucleotide divergence between populations averaged 0.09 +/- 0.001% and ranged from 0.00 to 0.14%. Significant genetic heterogeneity was observed among most populations, suggesting that koala populations may be spatially structured along matrilines, although this may not be universal. The limited distribution of the central phylogenetic haplotype suggested the possibility of historical population bottlenecks north of the Gold Coast, while the presence of two highly divergent haplotypes at the Moreton site may indicate the occurrence of one or more undocumented translocation events into this area.  相似文献   

7.
The molecular evolution and population genetics of migratory green turtles (Chelonia mydas) in the Greater Caribbean were examined with mitochondrial DNA (mtDNA) control region I sequences. A total of 488 base positions (bp) per individual were aligned for 44 individuals from four nesting populations in Florida, Costa Rica, Aves Island (Venezuela), and Surinam. Twelve sequence polymorphisms were detected, representing ten transitions, one transversion, and one 10-bp repeat. Sequence analyses of within- and between-population diversity revealed a deep divergence between western and eastern Caribbean nesting colonies and an inverse relationship between reproductive female population size and mtDNA diversity. In small populations, genetic admixture was important to maintaining high diversity, whereas larger populations appear to have experienced historical bottlenecks or resulted from founder effects. Mitochondrial DNA sequences of the control region offer an order of magnitude greater resolution than restriction site data for addressing questions about mtDNA variation, both within and between populations of green turtles.  相似文献   

8.
The mechanisms that determine population structure in highly mobile marine species are poorly understood, but useful towards understanding the evolution of diversity, and essential for effective conservation and management. In this study, we compare putative sperm whale populations located in the Gulf of Mexico, western North Atlantic, Mediterranean Sea and North Sea using mtDNA control region sequence data and 16 polymorphic microsatellite loci. The Gulf of Mexico, western North Atlantic and North Sea populations each possessed similar low levels of haplotype and nucleotide diversity at the mtDNA locus, while the Mediterranean Sea population showed no detectable mtDNA diversity. Mitochondrial DNA results showed significant differentiation between all populations, while microsatellites showed significant differentiation only for comparisons with the Mediterranean Sea, and at a much lower level than seen for mtDNA. Samples from either side of the North Atlantic in coastal waters showed no differentiation for mtDNA, while North Atlantic samples from just outside the Gulf of Mexico (the western North Atlantic sample) were highly differentiated from samples within the Gulf at this locus. Our analyses indicate a previously unknown fidelity of females to coastal basins either side of the North Atlantic, and suggest the movement of males among these populations for breeding.  相似文献   

9.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Four Brazilian populations of Anomalocardia brasiliana were tested for mutual genetic homogeneity, using data from 123 sequences of the mtDNA cytochrome oxidase c subunit I gene. A total of 36 haplotypes were identified, those shared being H3 (Canela Island, Prainha and Acupe) and both H5 and H9 (Prainha and Acupe). Haplotype diversity values were high, except for the Camurupim population, whereas nucleotide values were low in all the populations, except for that of Acupe. Only the Prainha population showed a deviation from neutrality and the SSD test did not reject the demographic expansion hypothesis. Fst values showed that the Prainha and Acupe populations represent a single stock, whereas in both the Canela Island and Camurupim stocks, population structures are different and independent. The observed structure at Canela Island may be due to the geographic distance between this population and the remainder. The Camurupim population does not share any haplotype with the remaining populations in northeastern Brazil. The apparent isolation could be due to the rocky barrier located facing the mouth of the Mamanguape River. The results highlight the importance of wide-scale studies to identify and conserve local genetic diversity, especially where migration is restricted.  相似文献   

11.
We present a mtDNA analysis of Podocnemis expansa (n = 81) and Podocnemis unifilis (n = 228) turtles traded in Peru to evaluate the potential origin of these animals. In particular, we were interested in the relationship between samples reported in the Iquitos markets (IMs) and a Pacaya Samiria Natural Reserve (PSNR) where illegal hunting is presumed. Our mtDNA data showed that, for both species, all haplotypes found within the PSNR were observed in the IM, and that these markets also displayed haplotypes not documented in the reserve. This suggests that the IMs are recipients of Podocnemis turtles from within and outside the PSNR. The fact that most of the haplotype diversity observed in the markets was not found within the PSNR strongly suggests that Podocnemis genetic diversity is exploited in areas where conservation actions are limited. Hence, we recommend expanding Podocnemis conservation efforts outside of protected areas.  相似文献   

12.
The sika deer (Cervus nippon) once inhabited the entire Tohoku District, the northeastern part of the main island of Japan. Currently, they are isolated as three discontinuous populations on Mt. Goyo, the Oshika Peninsula, and Kinkazan Island. To assess the genetic diversity and relationships among the sika deer populations in the Tohoku District, we analyzed the mitochondrial DNA D-loop sequences from 177 individuals. We detected a total of five haplotypes. Three haplotypes were present in the population from Mt. Goyo at a haplotype diversity of 0.235 ± 0.061, two haplotypes in the population from the Oshika Peninsula at 0.171 ± 0.064, and only one haplotype was detected in the population from the Kinkazan Island. A significant genetic differentiation was observed among all population pairs. Collectively, our data supports the observed population bottlenecks in the past. Four of the five haplotypes were specific to one of the three populations, whereas only one haplotype was shared between the Mt. Goyo and the Oshika Peninsula populations. This common haplotype may indicate a common ancestral population in the Tohoku District. Conversely, the D-loop haplotypes were completely different among the Kinkazan Island and Oshika Peninsula populations. The lack of a shared haplotype indicates that female gene flow between the two populations is very limited and that the 0.6 km strait acts as a strong barrier.  相似文献   

13.
Liu Y  Hou M  Wu K 《Environmental entomology》2010,39(4):1344-1351
The pink bollworm Pectinophora gossypiella is an invasive pest insect that has successfully established populations in many cotton growing regions around the world. In this study, the genetic diversity and population structure of Chinese populations of P. gossypiella were evaluated using mitochondrial DNA sequence data (COII and Nad4). For comparison, individuals of Pakistan and America were also sequenced at the same two mtDNA regions. Extremely low genetic variation was observed in the two mitochondrial regions among all populations examined. Most of the populations harbored only one to two haplotypes. Although the Nad4 region showed relatively high haplotype diversity and nucleotide variation, ranging from 0.363 to 0.591 and from 0.00078 to 0.00140, respectively, there were only three haplotypes observed in this region. COII and Nad4 haplotype networks shaved one or two common haplotype(s) forming the center of a star-shaped phylogeny. Pairwise tests showed that most of the populations were not significantly differentiated from each other. The Chinese populations were differentiated from the Pakistani and American populations in the Nad4 region. The low level of population genetic variation of P. gossypiella is attributed to invasion bottlenecks, which may have been subsequently strengthened by its nonmigratory biology and the mosaic pattern of agricultural activities.  相似文献   

14.
Iranian mangrove forests occur between longitude 25°19′ and 27°84′, in the north part of the Persian Gulf and Oman Sea. In 2002, it was estimated that 93.37 km2 of Iranian shorelines were covered with mangrove forests, with the largest area (67.5 km2) occurring between the Khamir Port and the northwest side of Qeshm Island, and the smallest area (0.01 km2) in the Bardestan estuary. Only two species of mangrove are found in the Persian Gulf: Avicennia marina from Avicenniaceae and Rhizophora macrunata from Rhizophoraceae. A. marina is the dominant specie in these forests whereas Rh. macrunata is found only in the Sirik region. Overexploitation of mangrove leaves and oil pollution are the main causes of mangrove destruction in this region.  相似文献   

15.
Mitochondrial haplotype diversity in 27 populations of brown trout, Salmo trutta L., in Austria was investigated by sequencing the 5' end of the mitochondrial DNA (mtDNA) control region. Although all populations are within the Danube drainage, 44% of all individuals carried Atlantic basin haplotypes. It is argued that the presence of these haplotypes in Austria primarily reflects introgression stemming from the stocking of hatchery-reared fish. However, several lines of evidence suggest that some natural colonization from Atlantic lineages may have contributed to the present haplotype diversity. Nonetheless, the more diverse Danubian clade is represented by regionally distinct haplotype diversity that should be protected from the continued introduction of domesticated strains of exogenous fish  相似文献   

16.
In the present study, mitochondrial DNA polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) and nuclear DNA inter-simple sequence repeat (ISSR) assays were used to assess the phylogenetic and phylogeographic relationships among Garra rufa samples from Anatolia. The complete mtDNA NADH 3/4 dehydrogenase (ND-3/4) gene amplified by PCR was digested with eight restriction enzymes. These enzymes produced 20 composite haplotypes for G. rufa populations. All the mtDNA haplotypes detected were highly diverged from each other and each lineage had a unique genetic profile. The evaluation of mtDNA PCR-RFLP data coupled with geological history of Anatolia indicated a deep genetic divergence among the mtDNA haplotypes of G. rufa populations from drainages of the Mediterranean and Persian Gulf, suggesting an early isolation of Tigris-Euphrates with Orontes river and other rivers draining into the Mediterranean Sea. In general, data from both mtDNA and nDNA were congruent.  相似文献   

17.
中间黄颡鱼群体遗传变异与亲缘生物地理   总被引:2,自引:0,他引:2  
通过分析81尾采自华南西部12条水系的中间黄颡鱼(Pelteobagrus intermedius)mtDNA控制区435 bp的序列,研究其群体遗传变异及亲缘生物地理格局。结果显示,中间黄颡鱼群体间的遗传分化较小,核苷酸变异只有0.54%。12条水系的群体共有7个单倍型,其中一些现已相互隔离的水系中的群体共享同一个单倍型,提示这些水系曾经有非常密切的联系。根据嵌套进化支序分析,中间黄颡鱼可能起源于峒中河、北仑河、防城河所在的广西与越南交界地区,并通过两条途径向华南沿海西部诸独立水系和海南岛扩散,在演化过程中,曾发生片断化事件,长距离建群和持续的分布区扩张。  相似文献   

18.
Mitochondrial DNA (mtDNA) variation was studied using restriction fragment length polymorphism (RFLP) in chum salmon populations from three rivers in southern Primorye and one river in Sakhalin Island. Significant differences were detected between the samples from Primorye and Sakhalin Island. No differences were found between the samples from the rivers of Primorye, which can be explained by a high rate of gene flow due to transplantation of spawn from one river to another. The effect of fish breeding on the chum salmon populations correlated with the indices of haplotype and nucleotide diversity (h and pi, respectively). The lowest diversity was found in the completely artificial population from the Ryazanovka River; the highest, in natural populations from the Narva and Naiba rivers. Frequencies of haplotypes in consecutive generations were significantly different, which confirms the effects of genetic drift on the small-size chum salmon populations of Primorye.  相似文献   

19.
This study describes complete control region sequences of mitochondrial DNA (mtDNA) from 117 Ethiopian cattle from 10 representative populations, in conjunction with the available cattle sequences in GenBank. In total, 79 polymorphic sites were detected, and these defined 81 different haplotypes. The haplotype and nucleotide diversity of Ethiopian cattle did not vary among the populations studied. All mtDNA sequences from Ethiopian cattle converged into one main maternal lineage (T1) that corresponds to African Bos taurus cattle. According to the results of this study, no zebu mtDNA haplotypes have been found in Ethiopia, where the most extensive hybridization took place on the African continent.  相似文献   

20.
Mitochondrial (mt) DNA sequences were analysed to resolve the phylogeography and population genetic structure of Atlantic and Mediterranean populations of green turtles ( Chelonia mydas ). Analysis of sequence variation over 487 base pairs of the control (D-loop) region identified 18 haplotypes among 147 individuals from nine nesting populations. Pairwise comparisons of haplotype frequencies distinguished most nesting colonies, indicating significant genetic differentiation among rookeries and a strong propensity for natal homing behaviour by nesting females. Comparison of control region sequence data to earlier restriction fragment length polymorphism (RFLP) data for the same individuals demonstrates approximately a sixfold higher substitution rate in the 5' end of the control region. The sequence data provide higher resolution both in terms of the number of mtDNA genotype variants and the phylogeographic relationships detected within the Atlantic region, and reveal a gene genealogy that distinguishes two groups of haplotypes corresponding to (i) the western Caribbean and Mediterranean, and (ii) eastern Caribbean, South Atlantic and West Africa. The data suggest that phylogeographic patterns in the Atlantic Ocean may be interpreted in terms of female nest site fidelity and episodic dispersal events. The distribution of mtDNA haplotypes within the region is thus explained by the geological and climatic alternations (glacial and interglacial) over the last million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号