首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A comparative study was done on the transfer frequency of R factors from 90 strains of multiple drug-resistant Aerobacter and 81 strains of Klebsiella to Escherichia coli CSH-2 (F(-), met(-), pro(-), Nal-r). The most common resistance patterns for the Aerobacter isolants were ampicillin streptomycin chloramphenicol tetracycline and ampicillin streptomycin chloramphenicol tetracycline kanamycin neomycin; for the Klebsiella isolants, the most common resistance pattern was ampicillin kanamycin streptomycin tetracycline chloramphenicol neomycin. R factors were isolated from 14.1% of the Aerobacter strains; 61.5% of these R factors harbored R determinants for ampicillin streptomycin tetracycline. R factors were isolated from 79.1% of the Klebsiella strains; four R factors were isolated with significant frequency; streptomycin chloramphenicol kanamycin neomycin, 37.5%; ampicillin streptomycin tetracycline kanamycin neomycin, 14.1%; ampicillin streptomycin tetracycline, 12.5%; and streptomycin chloramphenicol tetracycline, 12.5%.Chloramphenicol, kanamycin, and neomycin resistance was rarely transferred from the Aerobacter strains, although over 50% of the clinical isolants possessed resistance to these antibiotics. In contrast, over 75% of the Klebsiella strains transferred resistance to chloramphenicol, kanamycin, neomycin. Highest frequency of transferred resistance to individual drugs in the Aerobacter strains was to streptomycin (14.8%), whereas in the Klebsiella group resistance to four drugs was transferred at a very high frequency: streptomycin (80.8%), chloramphenicol (78.5%), kanamycin (76.4%), and neomycin (75.9%).  相似文献   

2.
Resistance to kanamycin and neomycin in the bacterial assemblage of a coastal plain stream was detected by growth of colonies on media containing antibiotics. Three of 184 kanamycin-resistant colonies hybridized with a probe containing the nptII gene from transposon Tn5; the nptII gene encodes the enzyme neomycin phosphotransferase and conveys resistance to kanamycin and neomycin. In one of these isolates, the homologous gene was cloned and shown to confer resistance to a kanamycin-sensitive Escherichia coli strain. Since enumeration of bacteria by acridine orange direct counts revealed that less than 0.2% of the bacteria present were cultivated, direct examination of environmental DNA was used to assess abundance of sequences that hybridize to the nptII gene. To examine the resistance potential of bacteria that were not cultured, total DNA was extracted from environmental samples and hybridized with specific probes. The relative amount of eubacterial DNA in each sample was determined by using a eubacterial specific rDNA probe. Then, the abundance of sequences that hybridize to the eubacterial neomycin phosphotransferase gene was determined by hybridization and expressed relative to the total eubacterial DNA in the assemblage. Relative gene abundance was significantly different among assemblages from different habitats (leaves, midchannel sediments, and bank sediments) but did not differ among stream sites.  相似文献   

3.
Abstract The reliability of Tn 5 as labelling tool was investigated in soil microcosm. The occurence of a selective in soil microcosm. The occurence of resistances encoded by Tn 5 nptII gene was assesed by kanamycin and neomycin amendment. The bioassay developed to monitor the persistence of the soil-added kanamycin did not detect the antibiotic activity in soil extract. A nptII -engineered Escherichia coli strain showed no enhanced survival in aminoglycoside amended soil. Tn 5-marker properties were investigated within indigenous bacteria to determine the specificity of labelling to follow the fate of recombinant DNA. Kanamycin and neomycin resistant population levels made Tn 5 aminoglycoside-resistance phenotype non-sensitive enough to select a soil dissemination of the labelled DNA. The unexpected occurrence of homologous sequences among soil organisms also prevented Tn 5 from being a specific DNA marker. By contrast, colony hybridization did not reveal homology to nptII suggesting its use as a reliable gene transfer indicator.  相似文献   

4.
The mechanisms of resistance to apramycin of five isolates of Escherichia coli from animals were investigated. Three isolates, which were resistant to all the aminoglycosides tested, did not transfer their resistance and did not produce aminoglycoside-modifying enzymes. The fourth isolate, which was resistant to apramycin, tobramycin, gentamicin, kanamycin and neomycin but not to amikacin, owed its resistance to production of the acetyltransferase AAC(3)IV. The gene specifying this enzyme was carried on a transposon, Tn800, on a plasmid designated R1535. The fifth isolate was resistant to apramycin, neomycin and kanamycin but not to gentamicin, tobramycin or amikacin. It produced an acetyltransferase that readily acetylated only apramycin, neomycin and paromomycin, a compound that is closely related to neomycin. Synthesis of this enzyme was specified by a chromosomal gene located near pyrD at about 20 min on the map of the E. coli K12 chromosome.  相似文献   

5.
The resistance to several drugs was determined in 29 pathogenic strains of Escherichia coli (026, 055 and 0111) isolated from infant diarrhoea and 18 non-pathogenic E. coli strains isolated from the same individuals. Both pathogenic and nonpathogenic strains were resistant to at least 1 to 10 drugs, but only in four cases resistance patterns of the pathogenic strains were identical with those of non pathogenic ones. The majority of the strains were resistant to sulfonamide, tetracycline, ampicillin, carbenicillin, neomycin and kanamycin. The drug resistance (except the resistance to nalidixic acid and rifampicin) was associated with conjugative R-plasmids. Some of the tested strains carried two R-plasmids in one cell, being in hetero R-state.  相似文献   

6.
Transgenic potato plants with the nptII gene coding for neomycin phosphotransferase (kanamycin resistance) as a selection marker were examined for the spread of recombinant DNA into the environment. We used the recombinant fusion of nptII with the tg4 terminator for a novel biomonitoring technique. This depended on natural transformation of Acinetobacter sp. strain BD413 cells having in their genomes a terminally truncated nptII gene (nptII'; kanamycin sensitivity) followed by the tg4 terminator. Integration of the recombinant fusion DNA by homologous recombination in nptII' and tg4 restored nptII, leading to kanamycin-resistant transformants. DNA of the transgenic potato was detectable with high sensitivity, while no transformants were obtained with the DNA of other transgenic plants harboring nptII in different genetic contexts. The recombinant DNA was frequently found in rhizosphere extracts of transgenic potato plants from field plots. In a series of field plot and greenhouse experiments we identified two sources of this DNA: spread by roots during plant growth and by pollen during flowering. Both sources also contributed to the spread of the transgene into the rhizospheres of nontransgenic plants in the vicinity. The longest persistence of transforming DNA in field soil was observed with soil from a potato field in 1997 sampled in the following year in April and then stored moist at 4 degrees C in the dark for 4 years prior to extract preparation and transformation. In this study natural transformation is used as a reliable laboratory technique to detect recombinant DNA but is not used for monitoring horizontal gene transfer in the environment.  相似文献   

7.
8.
In Rhizobium meliloti, Tn5 conferred resistance not only to kanamycin but to streptomycin, as well, in Escherichia coli, however only to kanamycin. Using in vitro recombinant DNA techniques, it was shown that the streptomycin resistance determinant was located downstream from the kanamycin resistance gene in the unique central region of Tn5. Expression of various cloned fragments of Tn5 suggested that both kanamycin and streptomycin resistance genes were transcribed from the same promoter. E. coli mutants allowing the expression of streptomycin resistance from Tn5 were isolated. The differential expression of the streptomycin resistance gene provides a simple selection/counterselection criterion, using only streptomycin in transfer experiments of Tn5 between E. coli and R. meliloti.  相似文献   

9.
I Barák  M Koptides  M Jucovic  M Sisová  J Timko 《Gene》1990,95(1):133-135
We constructed a promoter-probe vector, pJUP05, for brevibacteria and Escherichia coli based on the promoterless neomycin-resistance (neoR) gene from Tn5. This gene confers resistance to the aminoglycosides, kanamycin and neomycin. The promoter of the neoR gene was deleted and replaced by a suitable multiple cloning site. There are translation stop codons in all three reading frames upstream from the neoR gene. The plasmid contains functional origins of DNA replication for both brevibacteria and E. coli, and permits selection for chloramphenicol- and/or ampicillin-resistance markers.  相似文献   

10.
The incidence of resistance to ampicillin, chloramphenicol, kanamycin, nalidixic acid, neomycin and streptomycin was significantly greater (P < 0.001) in native heterotrophic bacteria than in Escherichia coli isolated from a range of sites along the Yarra River in south-eastern Australia. There was no significant difference in the incidence of resistance between native and faecal bacteria to tetracycline. Both groups were almost totally resistant to penicillin. Multivariate analyses indicated little clear spatial pattern in the incidence of resistance in native bacteria from upstream vs downstream sites along the Yarra River. In contrast, E. coli isolated from upstream (rural) sites tended to have a lower incidence of resistance than isolates from downstream (urban) sites. These findings have implications for the use of antibiotic resistance as a bacteriological water quality parameter.  相似文献   

11.
D Y Thomas  G Dubuc  S Narang 《Gene》1982,19(2):211-219
The construction of a series of Escherichia coli plasmid vectors suitable for assaying the effects of gene control signals fused with the E. coli lacZ gene is reported. A synthetic deoxyoligonucleotide dodecamer 5'-CATGAATTCATG GTACTTAAGTAC-5' containing two translation initiation codons (ATG) separated by an EcoRI site was ligated with a lacZ gene derivative which lacks the codons for the first eight amino acids in plasmid pMC1403 (Casadaban et al., 1980). Two ribosome-binding sequences were synthesised and inserted into the EcoRI site before an ATG, and the effects of these sequences on lacZ gene expression in vivo measured by assaying beta-galactosidase activity. The E. coli ribosomal RNA gene (rrnB) promoter, the tetracycline resistance gene promoter, and a lambda phage promoter were cloned using these plasmids. The plasmids are 9.9 kb in size, have ampicillin resistance as a selectable marker and are generally useful for the detection and in vivo assay of gene control regions.  相似文献   

12.
13.
One hundred eighty Escherichia coli strains isolated from raw and cooked dressed beef and from healthy humans were screened for resistance to each of nine antibiotics: chlortetracycline, ampicillin, chloramphenicol, kanamycin, neomycin, nalidixic acid, dihydrostreptomycin, oxytetracycline, and tetracycline. Nearly 80% of the 98 beef isolates and 54% of the 82 human isolates were resistant to one or more of the antibiotics tested. Ampicillin resistance was most frequent among beef isolates, and dihydrostreptomycin resistance was most frequent among isolates of human origin. About 74% of the multiply resistant beef strains and 85% of the multiply resistant human strains transferred all or part of their resistance to E. coli K-12 recipients.  相似文献   

14.
The non-conjugative plasmid pAV5 specifies resistance to kanamycin/neomycin (KmR) and tetracycline (TcR). Physical evidence is presented to show that pAV5 gives rise to two plasmids, pAV51 (KmR) and pAV52 (TcR), which are formed by deletion of apparently non-overlapping segments of pAV5. Expression of TcR has been obtained in Escherichia coli and is associated with a 1.9 kb HindIII fragment found in pAV5 and in pAV52. Expression of KmR has been obtained in E. coli and is associated with a 1.3 kb PstI fragment found in pAV5 and pAV51. Evidence is presented that the KmR gene is flanked by inverted repeat sequences and is therefore tentatively identified as a transposon, designated Tn4411. The KmR gene specifies an aminoglycoside 3'-phosphotransferase-type I (APH(3')-I) enzyme.  相似文献   

15.
16.
The host range of coliphage Mu was greatly expanded to various genera of gram-negative bacteria by using the hybrid plasmic RP4::Mu cts, which is temperature sensitive and which confers resistance to ampicillin, kanamycin, and tetracycline. These drug resistance genes were transferred from Escherichia coli to members of the general Klebsiella, Enterobacter, Citrobacter, Salmonella, Proteus, Erwinia, Serratia, Alcaligenes, Agrobacterium, Rhizobium, Pseudomonas, Acetobacter, and Bacillus. Mu phage was produced by thermal induction from the lysogens of all these drug-resistant bacteria except Bacillus. Mu phage and RP4 or the RP4::Mu plasmid were used to create intergeneric recombinant strains by transfer of some genes, including the arylsulfatase gene, between Klebsiella aerogenes and E. coli. Thus, genetic analysis and intergeneric gene transfer are possible in these RP4::Mu-sensitive bacteria.  相似文献   

17.
18.
The complete nucleotide sequence of plasmid pAP4 isolated from Acetobacter pasteurianus 2374T has been determined. Plasmid pAP4 was analysed and found to be 3,870 bp in size with a G+C content of 50.1%. Computer assisted analysis of sequence data revealed 2 possible ORFs with typical promoter regions. ORF1 codes for a protein responsible for kanamycin resistance similar with Tn5 transposone, ORF2 encodes a resistance to ampicillin identical with Tn3 transposone. Plasmid has in A. pasteurianus five copies and in E. coli DH1 about 30 copies per chromosome and it segregation stability in both strains is very high. Based on the data on replication region, plasmid does not code for a replication protein and origin region is similar with ColE1-like plasmid.  相似文献   

19.
目的:从氧化葡糖杆菌H24中克隆山梨醇脱氢酶基因进行表达并检测其活性。方法:以氧化葡糖杆菌H24基因组DNA为模板,PCR扩增包括启动子、结构基因及其后的终止序列在内的山梨醇脱氢酶基因;将PCR产物插入pMD18T载体,转化大肠杆菌DH5α;通过活性电泳检测山梨醇脱氢酶在大肠杆菌中的表达及活性。结果:从氧化葡糖杆菌H24中扩增得到山梨醇脱氢酶基因并在大肠杆菌中实现表达,重组菌株经活性电泳检测具有醇糖转化活性。结论:原核表达的山梨醇脱氢酶具有很强的醇糖转化活性。  相似文献   

20.
The kanamycin resistance encoded by the neomycin phosphotransferase II gene (nptII) of transposon Tn5 is widely used in higher plant genetic transformation. The general process of plant transformation using nptII as a selectable marker gene, however, requires selecting kanamycin-resistant plants or tissues in culture. Even with the recently developed vacuum infiltration method for Arabidopsis transformation, the plant culture steps are not completely eliminated in selection for kanamycin-resistant transformants. The herbicide resistance genes, such as bar, which provides resistance to bialaphos, allow Arabidopsis transformation to become a true non-culture procedure. In this report, we assessed the feasibility of applying kanamycin as a spray in selecting for kanamycin-resistant Arabidopsis transformants grown in soil. We find that kanamycin-resistant transformants were effectively selected by spraying soil-grown Arabidopsis seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号