首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Galanin is a peptide that is associated with cholinergic neurons of the basal forebrain and, thus, of interest for the neuropathology of Alzheimer's disease. In the present study, human galanin-like immunoreactivity was measured in postmortem human cerebral cortical tissues by using a homologous radioimmunoassay. In an initial study, six cerebral cortical regions were evaluated from nine elderly controls, 13 neuropathologically verified Alzheimer's disease patients, and 19 elderly schizophrenics. A significant 65% increase in galanin was found in frontal cortex Brodmann area 8 of Alzheimer's disease patients compared with controls. In contrast, cerebral cortical tissues from elderly schizophrenics were not different from those from elderly controls in any region. In a second study, 10 cerebral cortical regions were evaluated from 50 neuropathologically verified Alzheimer's disease patients and nine elderly controls. Concentrations of galanin were increased significantly 26–61% in six of 10 cerebral cortical regions examined (Brodmann areas F8, F44, T20, T21, T36, and P22). Purification of brain extracts by size-exclusion Sephadex G-50 chromatography revealed that human galanin-like immunoreactivity eluted in two peaks of different molecular weights. These studies reveal increased concentrations of galanin in the cerebral cortex of Alzheimer's disease, similar to previous findings in basal forebrain tissue. Because galanin inhibits cholinergic neurotransmission, these findings may have important implications in the understanding of Alzheimer's disease neuropathology and associated cognitive deficits.  相似文献   

2.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

3.
Behavioural symptoms of Alzheimer's disease, such as aggression, may determine the care patients required. Most postmortem neurochemical studies have been of institutionalized patients and conclusions drawn from these may not be valid for all patients. We have shown that serotonin 2 receptors are not lost from 12 of the 13 areas of cerebral cortex examined in the patients assessed to be free of aggressive symptoms. This has been interpreted as representing the relative preservation of cortical interneurones. In contrast choline acetyltransferase activity was reduced in all areas whereas serotonin content was reduced in only 2 of the 4 areas examined.Abbreviations AD Alzheimer's disease - ChAT choline acetyltransferase activity - GABA gamma-amino butyric acid - 5-HT serotonin - SLIR somatostatin-like immuno-reactivity Special issue dedicated to Dr. Alan N. Davison.  相似文献   

4.
Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months).  相似文献   

5.
Putative nicotine receptors in the human cerebral cortex were characterized with L-[3H]nicotine, L-[3H]Nicotine binding was enhanced by the addition of Ca2+ and abolished in the presence of Na3EDTA. Association and dissociation of the ligand were rapid at 25 degrees C with t1/2 values of 2 and 3 min, respectively. Saturation binding analysis revealed an apparent single class of sites with a dissociation constant of 5.6 nM and a Hill coefficient of 1.05. There was no effect of postmortem interval on the density of binding sites assayed up to 24 h in rat frontoparietal cortex. Nicotine binding in human cortical samples was also unaltered by increasing sampling delay. In human cortical membranes, binding site density decreased with normal aging. Receptor affinity and concentration in samples of frontal cortex (Brodmann area 10) from patients with Alzheimer's disease were comparable to age-matched control values. Samples of infratemporal cortex (Brodmann area 38) from patients with Alzheimer's disease had a 50% reduction in the number of L-[3H]nicotine sites. Choline acetyltransferase activity was significantly decreased in both cortical areas. Enzyme activities in the temporal pole were reduced to 20% of control values. These data indicate that postsynaptic nicotine receptors are spared in the frontal cortex in Alzheimer's disease. In the infratemporal cortex, significant numbers of receptors remain despite the severe reduction in choline acetyltransferase activity. Replacement therapy directed at these sites may be warranted in Alzheimer's disease.  相似文献   

6.
The septo-hippocampal neurons (SHNs), located in the medial septum, project to the hippocampal formation. The population of SHNs, as shown by single unit recordings in urethane-anesthetized rats, is heterogeneous, both in terms of patterns of spontaneous activity (a significant proportion of the SHNs display a characteristic rhythmically bursting activity at about 4 Hz) and of conduction velocity. Their average rate of spontaneous discharge is quite high (20 impulses per second). They are excited by the iontophoretic application of acetylcholine and various cholinergic agonists. They are also excited by some peptides such as substance P and TRH. Parallel studies in aged animals show that the physiological properties of the SHNs are altered, while their pharmacological properties seem to be unchanged. Immunohistochemical investigations using antibodies against various peptides and a monoclonal antibody against choline acetyltransferase (ChAT) show that SHNs retrogradely-labeled from the hippocampus often contain ChAT, less frequently galanin-like immunoreactivity and in a few cases enkephalin, luteinizing hormone-releasing hormone, or calcitonin gene-related peptide. In contrast, cholecystokinin, vasoactive intestinal peptide, substance P, somatostatin, dynorphin-B and neurotensin, although present in some medial septal neurons, were never observed in neurons projecting to the hippocampus.  相似文献   

7.
Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease   总被引:21,自引:5,他引:16  
Abstract: A defect in energy metabolism may play a role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. In the present study, we examined the activities of the enzymes that catalyze oxidative phosphorylation in frontal, temporal, parietal, and occipital cortex from Alzheimer's disease patients and age-matched controls. Complex I and complex II–III activities showed a small decrease in occipital cortex, but were unaffected in the other cortical areas. The most consistent change was a significant decrease of cytochrome oxidase (complex IV) activity of 25–30% in the four cortical regions examined. These results provide further evidence of a cytochrome oxidase defect in Alzheimer's disease postmortem brain tissue. A deficiency in this key energy-metabolizing enzyme could lead to a reduction in energy stores and thereby contribute to the neurodegenerative process.  相似文献   

8.
The neuropeptide galanin is an inhibitory modulator of hippocampal acetylcholine (ACh) release and cognitive functions. Anatomical evidence demonstrated some differences between the dorsal and ventral hippocampi notably in the expression of galanin receptor subtypes, and the neuronal population on which galanin-like immunoreactivity is expressed. This is suggestive of a differential role for this peptide in these two areas of the hippocampal formation. Using in vivo microdialysis, we investigated the role of galanin on ACh release in the dorsal and ventral hippocampi. Two models were studied: galanin-administered rats and transgenic mice over-expressing galanin (GAL-tg). In rats, galanin (2.0 and 10.0 microM) infused locally through the dialysis probe induced a significant decrease in ACh release in the ventral hippocampus, confirming previous findings, while no effect was seen in the dorsal hippocampus. Using the no net flux method, a significant reduction in ACh levels was noted only in the ventral hippocampus of GAL-tg compared to wild-type littermates. These results suggest that excess endogenous galanin can suppress basal ACh release, with anatomical specificity, to the ventral hippocampus. These results are of interest in the context of galanin receptor subtypes in the dorsal and ventral hippocampus, and the differential alterations of hippocampal subregions in neurological diseases such as Alzheimer's dementia.  相似文献   

9.
The distribution of galanin-like immunoreactivity in various regions of the central nervous system was assessed in three mammalian species, pig, rat, and human, by radioimmunoassay. Galanin concentrations were highest in the hypothalamus and pituitary region. In spinal cord, there was a rostrocaudal/dorsoventral gradient with highest levels observed in the sacral dorsal horn. Serial dilutions of porcine tissue extracts diluted parallel to the porcine standard curve, while the rat and human tissue extracts did not. In all tissues examined by high pressure liquid chromatography, the principal peak of immunoreactivity coeluted with the authentic porcine galanin standard and was decreased by trypsin cleavage. These results suggest a role for galanin in the central nervous system and support species differences in the structure of galanin.  相似文献   

10.
A newly developed enzyme-linked immunosorbent assay for acetylcholinesterase (AChE) protein was combined with conventional measures of enzyme activity in a study of 15 brain regions from six control cases (non-neurological deaths), six cases of Alzheimer's disease, and six cases of Huntington's disease. In the control brains, the mean AChE activity varied 100-fold from region to region (cortex lowest, striatum highest). The variation in enzyme activity was exactly paralleled by a variation in protein immunoreactivity. Overall, the homospecific activity of AChE averaged 0.26 +/- 0.007 mU/pg, close to the value for electrophoretically homogeneous enzyme isolated from red blood cells. Similar homospecific activities were observed in samples from Huntington's and Alzheimer's brains. Evidently, AChE that is immunoreactive but enzymatically inactive does not accumulate in any of the three conditions examined. Huntington's brain samples showed normal total contents of AChE, but Alzheimer's brains showed significant decreases of both enzyme activity and immunoreactivity in all seven cortical regions and in two out of the eight subcortical structures examined, hippocampus and nucleus accumbens.  相似文献   

11.
Cholinergic processes were measured in motor cortex, hippocampus, and striatum of cats in the terminal stages of GM1 gangliosidosis and compared to those of control cats. The greatest difference observed was elevation in the rate of K+-stimulated release of acetylcholine (ACh) from brain slices prepared from affected cats. The K+-stimulated release of endogenous ACh was increased by 31-43% and of newly synthesized ACh by 19-80% in brain slices from different brain regions. All regions that were examined were affected but the greatest effects occurred in cortex. The rate of synthesis of ACh was elevated in cortical and hippocampal slices. Choline acetyltransferase activity in brain regions of cats with GM1 gangliosidosis was not significantly different from that in controls, whereas high-affinity choline transport in cortical synaptosomes was elevated. Muscarinic receptor binding sites were reduced in the cortex, hippocampus, and striatum of GM1 mutant cats, whereas the apparent affinity was not altered. These results indicate that there are major alterations of cholinergic function in the brains of cats with GM1 gangliosidosis.  相似文献   

12.
We have recently reported on the differential alterations of various cholinergic markers in cortical and subcortical regions in Alzheimer's disease (AD). The main purpose of the present study was to determine if cholinergic deficits observed in patients with AD are unique to this disorder or can be generalized to others such as idiopathic Parkinson's disease (PD) and PD with Alzheimer-type dementia (PD/AD). Muscarinic M1, M2, and nicotinic receptor binding parameters (KD and Bmax) were determined in various cortical and subcortical areas using selective radioligands ([3H]pirenzepine, [3H]AF-DX 116, and N[3H]methylcarbamylcholine). Choline acetyltransferase activity was also determined as a marker of the integrity of cholinergic innervation. Alterations of cholinergic markers are comparable in cortical areas in AD, PD, and PD/AD brains. In frontal and temporal cortices, as well as in the hippocampus, choline acetyltransferase activity and binding capacities of M2 and nicotinic binding sites are similarly decreased in these three disorders compared with age-matched control values. M1 receptor binding parameters are not significantly modified in cortical areas in patients with these disorders. In contrast, important differences between AD and PD brain tissues are found in subcortical areas such as the striatum and the thalamus. The density of M1 sites is significantly increased in striatal areas only in patients with AD, whereas densities of nicotinic sites are decreased in thalamus and striatum in PD and PD/AD, but not AD, brain tissues. The binding capacity of M2 sites is apparently unchanged in subcortical areas in all three disorders, although tendencies toward reductions are observed in the striatum of PD and PD/AD patients. Thus, although comparable alterations of various cholinergic markers are observed in cortical areas in the three neurological disorders investigated in the present study, important differences are seen in subcortical areas. This may be relevant to the respective etiological and clinical profiles of AD and PD.  相似文献   

13.
Brain Cytochrome Oxidase in Alzheimer''s Disease   总被引:5,自引:0,他引:5  
A recent demonstration of markedly reduced (-50%) activity of cytochrome oxidase (CO; complex 4), the terminal enzyme of the mitochondrial enzyme transport chain, in platelets of patients with Alzheimer's disease (AD) suggested the possibility of a systemic and etiologically fundamental CO defect in AD. To determine whether a CO deficiency occurs in AD brain, we measured the activity of CO in homogenates of autopsied brain regions of 19 patients with AD and 30 controls matched with respect to age, postmortem time, sex, and, as indices of agonal status, brain pH and lactic acid concentration. Mean CO activity in AD brain was reduced in frontal (-26%: p less than 0.01), temporal (-17%; p less than 0.05), and parietal (-16%; not significant, p = 0.055) cortices. In occipital cortex and putamen, mean CO levels were normal, whereas in hippocampus, CO activity, on average, was nonsignificantly elevated (20%). The reduction of CO activity, which is tightly coupled to neuronal metabolic activity, could be explained by hypofunction of neurons, neuronal or mitochondrial loss, or possibly by a more primary, but region-specific, defect in the enzyme itself. The absence of a CO activity reduction in all of the examined brain areas does not support the notion of a generalized brain CO abnormality. Although the functional significance of a 16-26% cerebral cortical CO deficit in human brain is not known, a deficiency of this key energy-metabolizing enzyme could reduce energy stores and thereby contribute to the brain dysfunction and neurodegenerative processes in AD.  相似文献   

14.
15.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

16.
Abstract: The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid β-peptide (Aβ) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Aβ accumulation in vivo may initiate and/or contribute to the process of neurodegeneration and thereby the development of AD. However, the mechanisms by which Aβ peptide influences/causes degeneration of the basal forebrain cholinergic neurons and/or the cognitive impairment characteristic of AD remain obscure. Using in vitro slice preparations, we have recently reported that Aβ-related peptides, under acute conditions, potently inhibit K+-evoked endogenous acetylcholine (ACh) release from hippocampus and cortex but not from striatum. In the present study, we have further characterized Aβ-mediated inhibition of ACh release and also measured the effects of these peptides on choline acetyltransferase (ChAT) activity and high-affinity choline uptake (HACU) in hippocampal, cortical, and striatal regions of the rat brain. Aβ1–40 (10?8M) potently inhibited veratridine-evoked endogenous ACh release from rat hippocampal slices and also decreased the K+-evoked release potentiated by the nitric oxide-generating agent, sodium nitroprusside (SNP). It is interesting that the endogenous cyclic GMP level induced by SNP was found to be unaltered in the presence of Aβ1–40. The activity of the enzyme ChAT was not altered by Aβ peptides in hippocampus, cortex, or striatum. HACU was reduced significantly by various Aβ peptides (10?14 to 10?6M) in hippocampal and cortical synaptosomes. However, the uptake of choline by striatal synaptosomes was altered only at high concentration of Aβ (10?6M). Taken together, these results indicate that Aβ peptides, under acute conditions, can decrease endogenous ACh release and the uptake of choline but exhibit no effect on ChAT activity. In addition, the evidence that Aβ peptides target primarily the hippocampus and cortex provides a potential mechanistic framework suggesting that the preferential vulnerability of basal forebrain cholinergic neurons and their projections in AD could relate, at least in part, to their sensitivity to Aβ peptides.  相似文献   

17.
Abstract: Using iodinated human galanin and autoradiography, galanin binding sites were studied in cortical and hippocampal areas and in some brainstem nuclei in the brains of eight patients with senile dementia of the Alzheimer type (SDAT) and of nine matched control cases. The highest density of binding sites was found in the substantia nigra with a less intense labeling in the hippocampus and cortical regions. In the SDAT cases a significant increase in number of galanin binding sites was found in some hippocampal areas, a decrease in the caudate nucleus, and no significant changes in frontal and entorhinal cortices. These findings suggest that some central galanin systems may be deranged in SDAT.  相似文献   

18.
The presence of galanin-like immunoreactivity in nerves to the stomach of the Atlantic cod has been investigated by immunohistochemistry. The distribution of ganglion cells showing galanin-like immunoreactivity was compared with the total distribution in nerves and ganglia. Projection studies were made to determine the origin of the galanin neurons. The effect of galanin was studied in smooth muscle strip preparations of the gut wall and arteries. Galanin-like immunoreactive ganglion cells frequently occurred along the vagal branches to the stomach. Most of them projected cranially. Immunoreactive nerve fibres were present in all layers of the gut and around arterial branches on the surface of the stomach. Ligations of the vagus and splanchnic nerves produced accumulations of immunoreactive material on both sides of the ligature. Galanin produced weak contractile effects unaffected by tetrodotoxin on the gut wall and on gut arteries. It is concluded that a population of the ganglion cells along the vagus nerve in the Atlantic cod contains a galanin-like peptide. Some of these cells may be parts of autonomic parasympathetic pathways innervating the gut of the Atlantic cod, having direct excitatory effects on the smooth muscles of the gut wall and gut arteries.  相似文献   

19.
Abstract: Molecular subtypes of muscarinic receptors (m1–m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease. However, the status of these receptors in human brain and Alzheimer's disease is incompletely understood. The m1–m5 receptors in brains from control subjects and Alzheimer's disease patients were examined using a panel of specific antisera and radioligand binding. Quantitative immunoprecipitation demonstrated a predominance of the m1, m2, and m4 receptor subtypes in cortical and subcortical regions in control subjects. In Alzheimer's disease, normal levels of m1 receptors measured by radioligand binding contrasted with decreased m1 receptor immunoreactivity, suggesting that the m1 receptor is altered in Alzheimer's disease. The m2 immunoreactivity was decreased, consistent with the loss of m2 binding sites and the location of this receptor subtype on presynaptic cholinergic terminals. The m4 receptor was up-regulated significantly and may offer a target for new memory-enhancing drugs. Differential alterations of molecular subtypes of muscarinic receptors may contribute to the cholinergic component of Alzheimer's disease dementia.  相似文献   

20.
Distribution of galanin-like immunoreactivity in baboon brain   总被引:4,自引:0,他引:4  
Galanin-like immunoreactivity (GLI) was measured in baboon brains using a recently developed radioimmunoassay. Concentrations were measured in 10 cortical regions, hippocampus and 20 subcortical regions. The highest concentrations were in the median eminence, followed by hypothalamus, locus ceruleus, periaqueductal grey, bed nucleus of the stria terminalis, septum, amygdala and substantia innominata. Substantial amounts were also measurable in the inferior olive, basal ganglia and thalamus with very low levels in cerebellum. In cerebral cortex, concentrations were lowest in occipital cortex and highest in dorsolateral frontal cortex. Hippocampal concentrations were higher than those in cerebral cortex. Concentrations of GLI in cerebral cortex were significantly correlated with choline acetyltransferase activity and substance P immunoreactivity but not with concentrations of somatostatin or neuropeptide Y. Approximately half the GLI coeluted with porcine standards while half corresponded to a lower molecular weight species on gel permeation chromatography. With reverse phase high performance liquid chromatography (HPLC) the majority of the immunoreactivity eluted just in front of the porcine standard with a smaller amount coeluting with the porcine standard. These results show a widespread distribution of GLI in primate brain and are in accord with previous immunocytochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号