首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alzheimer's disease (AD) is characterized by neurofibrillary tangles and by the accumulation of beta-amyloid (Abeta) peptides in senile plaques and in the walls of cortical and leptomeningeal arteries as cerebral amyloid angiopathy (CAA). There also is a significant increase of interstitial fluid (ISF) in cerebral white matter (WM), the pathological basis of which is largely unknown. We hypothesized that the accumulation of ISF in dilated periarterial spaces of the WM in AD correlates with the severity of CAA, with the total Abeta load in the cortex and with Apo E genotype. A total of 24 AD brains and 17 nondemented age-matched control brains were examined. CAA was seen in vessels isolated from brain by using EDTA-SDS lysis stained by Thioflavin-S. Total Abeta in gray matter and WM was quantified by immunoassay, ApoE genotyping by PCR, and dilatation of perivascular spaces in the WM was assessed by quantitative histology. The study showed that the frequency and severity of dilatation of perivascular spaces in the WM in AD were significantly greater than in controls (P< 0.001) and correlated with Abeta load in the cortex, with the severity of CAA, and with ApoE epsilon4 genotype. The results of this study suggest that dilation of perivascular spaces and failure of drainage of ISF from the WM in AD may be associated with the deposition of Abeta in the perivascular fluid drainage pathways of cortical and leptomeningeal arteries. This failure of fluid drainage has implications for therapeutic strategies to treat Alzheimer's disease.  相似文献   

3.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

4.
The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP. This finding indicates that both soluble derivatives contain all or part of the beta AP sequence, and it suggests that one or both of these forms may be the immediate precursor of the amyloid deposited in AD.  相似文献   

5.
The amyloid fibrils deposited in cerebral vessel walls and senile plaques in Alzheimer's disease are polymeric forms of a 4 kDa fragment produced by proteolysis of a putative precursor protein (APP). Using antibodies to several fragments of the deduced precursor, we were able to demonstrate the presence of APP in senile plaques, brain extracts and cerebrospinal fluid. Membrane-associated APP is detected as a group of 105-135 kDa proteins while soluble APP is predominantly 105 kDa, does not react with an anti C-terminal antibody, and is 10 kDa shorter than the membrane-bound APP. Amino terminal sequence of the tissue 105 kDa protein indicates that APP begins at residue 18 of the cDNA sequence. These findings imply that i) two forms of APP are detected: membrane-bound and secreted, and ii) APP can be processed in situ.  相似文献   

6.
R L Neve  J Rogers  G A Higgins 《Neuron》1990,5(3):329-338
The deposition of cerebrovascular and plaque amyloid in the CNS is a primary feature of Alzheimer's disease and aged Down's syndrome pathology. The localization of the Alzheimer amyloid protein precursor (APP) gene on chromosome 21, along with its overexpression in Down's syndrome brain compared with normal brain, suggests that alterations in APP gene expression may play a role in the development of the neuropathology common to the two diseases. In the present report, we demonstrate that a specific spliced form of mRNA that is transcribed from the APP gene and that lacks the beta/A4 sequence is elevated in the nucleus basalis, occipitotemporal cortex, and parahippocampal gyrus in Alzheimer's disease brain relative to controls. These results are based on combined data from RNA slot blot analysis, in situ hybridization, and polymerase chain reaction quantification of specific mRNAs taken directly from tissue sections.  相似文献   

7.
8.
9.
The deposition of amyloid beta A4 in the brain is a major pathological hallmark of Alzheimer's disease. Amyloid beta A4 is a peptide composed of 42 or 43 amino acid residues. In brain, it appears in the form of highly insoluble, filamentous aggregates. Using synthetic peptides corresponding to the natural beta A4 sequence as well as analog peptides, we demonstrate requirements for filament formation in vitro. We also determine aggregational properties and the secondary structure of beta A4. A comparison of amino-terminally truncated beta A4 peptides identifies a peptide spanning residues 10 to 43 as a prototype for amyloid beta A4. Infrared spectroscopy of beta A4 peptides in the solid state shows that their secondary structure consists of a beta-turn flanked by two strands of antiparallel beta-pleated sheet. Analog peptides containing a disulfide bridge were designed to stabilize different putative beta-turn positions. Limited proteolysis of these analogs allowed a localization of the central beta-turn at residues 26 to 29 of the entire sequence. Purified beta A4 peptides are soluble in water. Size-exclusion chromatography shows that they form dimers that, according to circular dichroism spectroscopy, adopt a beta-sheet conformation. Upon addition of salts, the bulk fraction of peptides precipitates and adopts a beta-sheet structure. Only a small fraction of peptides remains solubilized. They are monomeric and adopt a random coil conformation. This suggests that the formation of aggregates depends upon a hydrophobic effect that leads to intra- and intermolecular interactions between hydrophobic parts of the beta A4 sequence. This model is sustained by the properties of beta A4 analogs in which hydrophobic residues were substituted. These peptides show a markedly increased solubility in salt solutions and have lost the ability to form filaments. In contrast, the substitution of hydrophilic residues leads only to small deviations in the shape of filaments, indicating that hydrophilic residues contribute to the specificity of interactions between beta A4 peptides.  相似文献   

10.
11.
Relative to the gray matter, there is a paucity of information regarding white matter biochemical alterations and their contribution to Alzheimer's disease (AD). Biochemical analyses of AD white matter combining size-exclusion, normal phase, and gas chromatography, immunoassays, and Western blotting revealed increased quantities of Abeta40 and Abeta42 in AD white matter accompanied by significant decreases in the amounts of myelin basic protein, myelin proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase. In addition, the AD white matter cholesterol levels were significantly decreased while total fatty acid content was increased. In some instances, these white matter biochemical alterations were correlated with patient apolipoprotein E genotype, Braak stage, and gender. Our observations suggest that extensive white matter axonal demyelination underlies Alzheimer's pathology, resulting in loss of capacitance and serious disturbances in nerve conduction, severely damaging brain function. These white matter alterations undoubtedly contribute to AD pathogenesis and may represent the combined effects of neuronal degeneration, microgliosis, oligodendrocyte injury, microcirculatory disease, and interstitial fluid stasis. To accurately assess the success of future therapeutic interventions, it is necessary to have a complete appreciation of the full scope and extent of AD pathology.  相似文献   

12.
Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by beta-Amyloid peptide (Abeta), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we analyze reports on oligodendrocytes' compromise in AD and discuss some experimental data indicative of Abeta toxicity in culture. We observed that 1 microM of fibrilogenic Abeta peptide damages oligodendrocytes in vitro: while pro-inflammatory molecules (1 microg/ ml LPS + 1 ng/ml IFNgamma) or the presence of astrocytes reduced the Abeta-induced damage. This agrees with our previous results showing an astrocyte-mediated protective effect over Abeta-induced damage on hippocampal cells and modulation of the activation of microglial cells in culture. Oligodendrocytes protection by astrocytes could be, either by reduction of Abeta fibrilogenesis/deposition or prevention of oxidative damage. Likewise, the decrease of Abeta-induced damage by proinflammatory molecules could reflect the production of trophic factors by activated oligodendrocytes and/or a metabolic activation as observed during myelination. Considering the association of inflammation with neurodegenerative diseases. oligodendrocytes impairment in AD patients could potentiate cell damage under pathological conditions.  相似文献   

13.
Amyloid beta peptide (A beta) is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the form of A beta that induces neurodegeneration in AD, defined here as bioactive A beta, is not clear. Preventing the formation of bioactive A beta or inactivating previously formed bioactive A beta should be a promising approach to treat AD. We have previously developed a cell-based assay for the detection of bioactive A beta species. The assay is based upon the correlation between the ability of an A beta sample to induce a unique form of cellular MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] formazan exocytosis, and its ability to activate glia and induce neurotoxicity. Here, we show that this cell-based assay is not only useful for a cellular model of A beta amyloidogenesis but is also able to detect bioactive A beta species in a transgenic mouse model of AD, as well as in post-mortem cortex samples from AD patients. There is a good correlation between the extent of glia activation and the level of bioactive A beta species in the mouse brain. A promising deuteroporphyrin that can inactivate bioactive A beta species was also identified using this assay. These novel insights and findings should have important implications for the treatment of AD.  相似文献   

14.
The many faces of amyloid beta in Alzheimer's disease   总被引:1,自引:0,他引:1  
The 'amyloid cascade hypothesis' links amyloid beta peptide (Abeta) with the pathological process of Alzheimer's disease (AD) and it still awaits universal acceptance. Amyloid precursor protein (APP), through the actions of the gamma-secretase complex, eventually becomes a different Abetaspecies. The various Abeta species have proven to be difficult to investigate under physiological conditions, and the species of Abeta responsible for neurotoxicity has yet to be unequivocally identified. The two important Abeta peptides involved are Abeta(1-40) and Abeta(1-42), and each has been ascribed both toxic and beneficial attributes. The ratio between the two species can be important in AD etiology. Additionally, shorter variants of Abeta peptides such as Abeta(1-8), Abeta(9-16) and Abeta(16) have also been shown to be potential participants in AD pathology. Interestingly, a new 56-kDa Abeta peptide (Abeta*56) disrupts memory when injected into the brains of young rats. Transgenic mice models are complicated by the interplay between various human Abeta types and the mouse Abeta types in the mouse brains. However, the accumulation of Abeta(1-42) in the brains of transgenic C. elegans worms and Drosophila is indeed detrimental. A less investigated aspect of AD is epigenetics, but in time the investigation of the role of epigenetics in AD may add to our understanding of the development of AD.  相似文献   

15.
The amyloid A4 (or beta protein), a 4.2 kD polypeptide, is a major component of amyloid deposits in the brains of patients with Alzheimer's Disease (AD). The self-aggregating amyloid A4 protein of AD is encoded as part of three larger proteins by the amyloid A4 precursor gene. The corresponding proteins have 695, 751 and 770 amino acid residues. To investigate the utility of amyloid beta protein precursor (A beta PP) as a diagnostic marker for AD an antiserum against a synthetic peptide (175-186), predicted from cDNA sequence for A beta PP, was used. The immunoreactivity of A beta PP in normal and AD cerebrospinal fluid (CSF) was measured by Western blot and detected with radiolabeled protein A. A total of fifty-seven CSF samples (AD = 27 and normal = 30) were analyzed for A beta PP immunoreactivity. A polyclonal antibody detected two major protein bands with apparent molecular weights of 105kD and 90kD both in normal and AD CSF. The difference between normal and AD CSF was not significant. These results indicate that immunoreactivity of A beta PP is present both in normal and AD CSF, and that the difference is too small to be used as a diagnostic marker.  相似文献   

16.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

17.
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.  相似文献   

18.
19.
The 39-43 amino acid beta amyloid protein (A beta) that deposits as amyloid in the brains of patients with Alzheimer's disease (AD) is encoded as an internal sequence within a larger membrane-associated protein known as the amyloid protein precursor (APP). In cultured cells, the APP is normally cleaved within the A beta to generate a large secreted derivative and a small membrane-associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire A beta. Our study was designed to determine whether the soluble APP derivatives in human brain end within the A beta as described in cell culture or whether AD brain produces potentially amyloidogenic soluble derivatives that contain the entire A beta. We find that both AD and control brain contain nonamyloidogenic soluble derivatives that end at position 15 of the A beta. We have been unable to detect any soluble derivatives that contain the entire A beta in either the AD or control brain.  相似文献   

20.
Disturbances of the cholesterol metabolism are associated with Alzheimer's disease (AD) risk and related cerebral pathology. Experimental studies found changing levels of cholesterol and its metabolites 24S‐hydroxycholesterol (24S‐OHC) and 27‐hydroxycholesterol (27‐OHC) to contribute to amyloidogenesis by increasing the production of soluble amyloid precursor protein (sAPP). The aim of this study was to evaluate the relationship between the CSF and circulating cholesterol 24S‐OHC and 27‐OHC, and the sAPP production as measured by CSF concentrations of sAPP forms in humans. The plasma and the CSF concentrations of cholesterol, 24S‐OHC and 27‐OHC, and the CSF concentrations of sAPPα, sAPPβ, and Aß1‐42 were assessed in subjects with AD and controls with normal cognition. In multivariate regression tests including age, gender, albumin ratio, and apolipoprotein E (APOE)ε4 status CSF cholesterol, 24S‐OHC, and 27‐OHC independently predicted the concentrations of sAPPα and sAPPβ. The associations remained significant when analyses were separately performed in the AD group. Furthermore, plasma 27‐OHC concentrations were associated with the CSF sAPP levels. The results suggest that high CSF concentrations of cholesterol, 24S‐OHC, and 27‐OHC are associated with increased production of both sAPP forms in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号