首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

2.
Four acidic amino acid residues, Asp97, Asp101, Glu118, and Glu202, were located in the cleft from the X-ray crystallographic analysis of FI-CMCase, endo-1,4-beta-glucanase (EC: 3.2.1.4) of Aspergillus aculeatus No. F-50. To identify the catalytic residues of the FI-CMCase, these residues were mutated to Glu or Ser from Asp97 and Asp101, and to Asp or Ser from Glu118 and Glu202 by site-directed mutagenesis, and totally 8 single mutant enzymes expressed in Escherichia coli were prepared: D97E, D97S, D101E, D101S, E118D, E118S, E202D, and E202S. Mutant enzymes E118S and E202S were not shown to have any detectable activity. Kinetic parameters of other mutant enzymes were measured after purification. The Km of mutant enzymes were not much different from that of wild type FI-CMCase, while the Vmax of mutant enzymes D97E, D97S, D101E, D101S, E118D, and D202E were much decreased to 1/50, 1/20, 1/4000, 1/2000, 1/800, and 1/1600 of the wild type FI-CMCase, respectively. From these results we concluded that Glu118 and Glu202 were most probable candidates for a catalytic pair of acidic amino acids in FI-CMCase.  相似文献   

3.
Yong-Biao J  Islam MN  Sueda S  Kondo H 《Biochemistry》2004,43(19):5912-5920
To clarify the mechanism of carboxyl transfer from carboxylbiotin to pyruvate, the following conserved amino acid residues present in the carboxyl transferase domain of Bacillus thermodenitrificans pyruvate carboxylase were converted to homologous amino acids: Asp543, Glu576, Glu592, Asp649, Lys712, Asp713, and Asp762. The carboxylase activity of the resulting mutants, D543E, E576D, E576Q, E592Q, D649N, K712R, K712Q, D713E, D713N, D762E, and D762N, was generally less than that of the wild type from mutation, but it decreased the most to 5% or even less than that of the wild type with D543E, D576Q, D649N, K712R, and K712Q. The decrease in activity observed for Asp543, Asp649, and Lys712 mutants was not for structural reasons because their structures seemed to remain intact as assessed by gel filtration and circular dichroism. On the basis of these data, a mechanism is proposed where Lys712 and Asp543 serve as the key acid and base catalyst, respectively.  相似文献   

4.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp(51). The D153E enzyme had an increased k(cat) in the presence of high concentrations of Mg(2+), along with a decreased Mg(2+) affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn(1) site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn(2+), dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

5.
Using site-specific mutagenesis, we have constructed two mutants of Escherichia coli dihydrofolate reductase (ecDHFR) to investigate further the function of a weakly acidic side chain at position 27 in substrate protonation: Asp27-->Glu (D27E) and Asp27-->Cys (D27C). The crystal structure of D27E ecDHFR in a binary complex with methotrexate shows that the side-chain oxygen atoms of Glu27 are in almost precisely the same location as those of Asp27 in the wild-type enzyme. Kinetic evidence indicates that Glu27 can indeed function efficiently in the proton relay to dihydrofolate. Even though vertebrate DHFRs all have a glutamic acid at the structurally equivalent position, the kinetic properties of Glu27 ecDHFR more closely resemble those of wild-type bacterial DHFRs than of vertebrate DHFRs. The D27C mutation produced an enzyme still capable of relaying a proton to dihydrofolate, but with the intrinsic pKa in its pH-activity profiles shifted upward to values characteristic of the more basic thiolate group. The crystal structure of the binary complex with methotrexate reveals two unexpected features: (1) the Cys27 sulfhydryl group does not point toward the pteridine-binding site, but the side chain of this residue is instead rotated 120 degrees to interact with a tyrosine side chain projecting from a neighboring beta-strand; (2) a bound ethanol molecule occupies a cavity adjacent to methotrexate. Ethanol is a component of the crystallization medium.  相似文献   

6.
Iwamoto M  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(10):2790-2796
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII), a negative phototaxis receptor of Natronobacterium pharaonis, can use light to pump a proton in the absence of its transducer protein. However, the pump activity is much lower than that of the light-driven proton-pump bacteriorhodopsin (BR). ppR's pump activity is known to be increased in a mutant protein, in which Phe86 is replaced with Asp (F86D). Phe86 is the amino acid residue corresponding to Asp96 in BR, and we expect that Asp86 plays an important role in the proton transfer at the highly hydrophobic cytoplasmic domain of the F86D mutant ppR. In this article, we studied protein structural changes and proton transfer reactions during the photocycles of the F86D and F86E mutants in ppR by means of Fourier transform infrared (FTIR) spectroscopy and photoelectrochemical measurements using a tin oxide (SnO2) electrode. FTIR spectra of the unphotolyzed state and the K and M intermediates are very similar among F86D, F86E, and the wild type. Asp86 or Glu86 is protonated in F86D or F86E, respectively, and the pK(a) > 9. During the photocycle, the pK(a) is lowered and deprotonation of Asp86 or Glu86 is observed. Detection of both deprotonation of Asp86 or Glu86 and concomitant reprotonation of the 13-cis chromophore implies the presence of a proton channel between position 86 and the Schiff base. However, the photoelectrochemical measurements revealed proton release presumably from Asp86 or Glu86 to the cytoplasmic aqueous phase in the M state. This indicates that the ppR mutants do not have the BR-like mechanism that conducts a proton uniquely from Asp86 or Glu86 (Asp96 in BR) to the Schiff base, which is possible in BR by stepwise protein structural changes at the cytoplasmic side. In ppR, there is a single open structure at the cytoplasmic side (the M-like structure), which is shown by the lack of the N-like protein structure even in F86D and F86E at alkaline pH. Therefore, it is likely that a proton can be conducted in either direction, the Schiff base or the bulk, in the open M-like structure of F86D and F86E.  相似文献   

7.
The crystal structures of the four product-complexed single mutants of the catalytic residues of Pseudomonas stutzeri maltotetraose-forming alpha-amylase, E219G, D193N, D193G and D294N, have been determined. Possible roles of the catalytic residues Glu219, Asp193 and Asp294 have been discussed by comparing the structures among the previously determined complexed mutant E219Q and the present mutant enzymes. The results suggested that Asp193 predominantly works as the base catalyst (nucleophile), whose side chain atom lies in close proximity to the C1-atom of Glc4, being involved in the intermediate formation in the hydrolysis reaction. While Asp294 works for tightly binding the substrate to give a twisted and a deformed conformation of the glucose ring at position -1 (Glc4). The hydrogen bond between the side chain atom of Glu219 and the O1-atom of Glc4, that implies the possibility of interaction via hydrogen, consistently present throughout these analyses, supports the generally accepted role of this residue as the acid catalyst (proton donor).  相似文献   

8.
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.  相似文献   

9.
Escherichia coli RNase HI has two Mn(2+)-binding sites. Site 1 is formed by Asp10, Glu48, and Asp70, and site 2 is formed by Asp10 and Asp134. Site 1 and site 2 have been proposed to be an activation site and an attenuation site, respectively. However, Glu48 and Asp134 are dispensable for Mn(2+)-dependent activity. In order to identify the Mn(2+)-binding sites of the mutant proteins at Glu48 and/or Asp134, the crystal structures of the mutant proteins E48A-RNase HI*, D134A-RNase HI*, and E48A/D134N-RNase HI* in complex with Mn(2+) were determined. In E48A-RNase HI*, Glu48 and Lys87 are replaced by Ala. In D134A-RNase HI*, Asp134 and Lys87 are replaced by Ala. In E48A/D134N-RNase HI*, Glu48 and Lys87 are replaced by Ala and Asp134 is replaced by Asn. All crystals had two or four protein molecules per asymmetric unit and at least two of which had detectable manganese ions. These structures indicated that only one manganese ion binds to the various positions around the center of the active-site pocket. These positions are different from one another, but none of them is similar to site 1. The temperature factors of these manganese ions were considerably larger than those of the surrounding residues. These results suggest that the first manganese ion required for activation of the wild-type protein fluctuates among various positions around the center of the active-site pockets. We propose that this fluctuation is responsible for efficient hydrolysis of the substrates by the protein (metal fluctuation model). The binding position of the first manganese ion is probably forced to shift to site 1 or site 2 upon binding of the second manganese ion.  相似文献   

10.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   

11.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

12.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

13.
The reaction between cytochrome c (Cc) and Rhodobacter sphaeroides cytochrome c oxidase (CcO) was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 55 (Ru-55-Cc). Flash photolysis of a 1:1 complex between Ru-55-Cc and CcO at low ionic strength results in electron transfer from photoreduced heme c to Cu(A) with an intracomplex rate constant of k(a) = 4 x 10(4) s(-1), followed by electron transfer from Cu(A) to heme a with a rate constant of k(b) = 9 x 10(4) s(-1). The effects of CcO surface mutations on the kinetics follow the order D214N > E157Q > E148Q > D195N > D151N/E152Q approximately D188N/E189Q approximately wild type, indicating that the acidic residues Asp(214), Glu(157), Glu(148), and Asp(195) on subunit II interact electrostatically with the lysines surrounding the heme crevice of Cc. Mutating the highly conserved tryptophan residue, Trp(143), to Phe or Ala decreased the intracomplex electron transfer rate constant k(a) by 450- and 1200-fold, respectively, without affecting the dissociation constant K(D). It therefore appears that the indole ring of Trp(143) mediates electron transfer from the heme group of Cc to Cu(A). These results are consistent with steady-state kinetic results (Zhen, Y., Hoganson, C. W., Babcock, G. T., and Ferguson-Miller, S. (1999) J. Biol. Chem. 274, 38032-38041) and a computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

14.
Blood coagulation factor XIIIa is a calcium-dependent enzyme that covalently ligates fibrin molecules during blood coagulation. X-ray crystallography studies identified a major calcium-binding site involving Asp(438), Ala(457), Glu(485), and Glu(490). We mutated two glutamic acid residues (Glu(485) and Glu(490)) and three aspartic acid residues (Asp(472), Asp(476), and Asp(479)) that are in close proximity. Alanine substitution mutants of these residues were constructed, expressed, and purified from Escherichia coli. The K(act) values for calcium ions increased by 3-, 8-, and 21-fold for E485A, E490A, and E485A,E490A, respectively. In addition, susceptibility to proteolysis was increased by 4-, 9-, and 10-fold for E485A, E490A, and E485A,E490A, respectively. Aspartic acids 472, 476, and 479 are not involved directly in calcium binding since the K(act) values were not changed by mutagenesis. However, Asp(476) and Asp(479) are involved in regulating the conformation for exposure of the secondary thrombin cleavage site. This study provides biochemical evidence that Glu(485) and Glu(490) are Ca(2+)-binding ligands that regulate catalysis. The binding of calcium ion to this site protects the molecule from proteolysis. Furthermore, Asp(476) and Asp(479) play a role in modulating calcium-dependent conformational changes that cause factor XIIIa to switch from a protease-sensitive to a protease-resistant molecule.  相似文献   

15.
The functional and structural significance of amino acid residues Met(39), Glu(56), Asp(58), Glu(60), and Gly(63) of Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase was explored by the approach of site-directed mutagenesis, initial rate kinetics, fluorescence spectroscopy, and CD spectrometry. Glu(56), Asp(58), Glu(60), and Gly(63) residues are conserved among known primary sequences of the bacterial and fungal enzymes. Kinetic analyses revealed that 240-, 540-, 570-, and 880-fold decreases in k(cat) were observed for the E56D, E60D, D58N, and D58E mutant enzymes, respectively, with a similar substrate affinity relative to the wild type enzyme. In contrast, no detectable enzymatic activity was observed for the E56A, E56Q, D58A, E60A, and E60Q mutants. These results indicated that the carboxyl side chain at positions 56 and 60 is mandatory for enzyme catalysis. M39F, unlike the other mutants, exhibited a 5-fold increase in K(m) value. Lower thermostability was found with the G63A mutant when compared with wild type or other mutant forms of F. succinogenes 1,3-1,4-beta-d-glucanase. Denatured wild type and mutant enzymes were, however, recoverable as active enzymes when 8 m urea was employed as the denaturant. Structural modeling and kinetic studies suggest that Glu(56), Asp(58), and Glu(60) residues apparently play important role(s) in the catalysis of F. succinogenes 1,3-1,4-beta-d-glucanase.  相似文献   

16.
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252→Ser (D252S), Glu (D252E) and Glu283→Gln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites −1 and +1 glucose.  相似文献   

17.
Site-specific mutagenesis was employed to investigate the proposed contribution of proton-donating residues (Glu, Asp) in the membrane domains of bovine rhodopsin to protonation of the Schiff base-linking protein and chromophore or to wavelength modulation of this visual pigment. Three point-mutations were introduced to replace the highly conserved residues Asp83 by Asn (D83N), Glu113 by Gln (E113 Q) or Glu134 by Asp (E134D), respectively. All 3 substitutions had only marginal effects on the spectral properties of the final pigment (less than or equal to 3 nm blue-shift relative to native rhodopsin). Hence, none of these residues by itself is specifically involved in Schiff base protonation or wavelength modulation of bovine rhodopsin.  相似文献   

18.
The mitochondrial phosphate transport protein (PTP) has six (A--F) transmembrane (TM) helices per subunit of functional homodimer with all mutations referring to the subunit of the homodimer. In earlier studies, conservative replacements of several residues located either at the matrix end (Asp39/helix A, Glu137/helix C, Asp236/helix E) or at the membrane center (His32/helix A, Glu136/helix C) of TM helices yielded inactive single mutation PTPs. Some of these residues were suggested to act as phosphate ligands or as part of the proton cotransport path. We now show that the mutation Ser158Thr, not part of a TM helix but located near the center of the matrix loop (Ile141--Ser171) between TM helices C and D, inactivates PTP and is thus also functionally relevant. On the other side of the membrane, the single mutation Glu192Asp at the intermembrane space end of TM helix D yields a PTP with 33% wild-type activity. We constructed double mutants by adding this mutation to the six transport-inactivating mutations. Transport was detected only in those with Asp39Asn, Glu137Gln, or Ser158Thr. We conclude that TM helix D can interact with TM helices A and C and matrix loop Ile141--Ser171 and that Asp39, Glu137, and Ser158 are not essential for phosphate transport. Since our results are consistent with residues present in all 12 functionally identified members of the mitochondrial transport protein (MTP) family, they lead to a general rule that specifies MTP residue types at 7 separate locations. The conformations of all the double mutation PTPs (except that with the matrix loop Ser158Thr) are significantly different from those of the single mutation PTPs, as indicated by their very low liposome incorporation efficiency and their requirement for less detergent (Triton X-100) to stay in solution. These dramatic conformational differences also suggest an interaction between TM helices D and E. The results are discussed in terms of TM helix movements and changes in the PTP monomer/dimer ratio.  相似文献   

19.
The high-resolution X-ray structure of wild-type staphylococcal nuclease (E43 SNase) suggests that Glu 43 acts a general basic catalyst to assist the attack of water on a phosphodiester substrate [Loll, P., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183]. Glu 43 is located at the base of the solvent-exposed and conformationally mobile omega-loop in the active site of E43 SNase having the sequence Glu43-Thr44-Lys45-His46-Pro47-Lys48- Lys49-Gly50-Val51-Glu52, where the gamma-carboxylate of Glu 52 is hydrogen bonded to the amide hydrogen of Glu 43. With a metabolic selection for SNase activity produced in an Escherichia coli host, we detected an unexpected deletion of residues 44-49 of the omega-loop of E43 SNase in cassette mutagenesis experiments designed to randomize codons 44 and 45 in the omega-loop and increase the activity of the previously described E43D mutation (D43 SNase). A high-resolution X-ray structure of D43 SNase has revealed that the E43D substitution significantly changes the structure of the omega-loop, reduces the interaction of the essential Ca2+ ion with its active-site ligands, and diminishes the network of hydrogen-bonded water molecules in the active site [Loll, P., & Lattman, E. E. (1990) Biochemistry 29, 6866]. This deletion of six amino acids from the omega-loop generates a protein (E43 delta SNase) having a partially solvent-exposed, surface beta-turn with the sequence Glu43-Gly50-Val51-Glu52; the structure of this beta-turn is addressed in the following article [Baldisseri et al. (1991) Biochemistry (following paper in this issue)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The importance of two putative Zn2+-binding (Asp347, Glu429) and two catalytic (Arg431, Lys354) residues in the tomato leucine aminopeptidase (LAP-A) function was tested. The impact of substitutions at these positions, corresponding to the bovine LAP residues Asp255, Glu334, Arg336, and Lys262, was evaluated in His6-LAP-A fusion proteins expressed in Escherichia coli. Sixty-five percent of the mutant His6-LAP-A proteins were unstable or had complete or partial defects in hexamer assembly or stability. The activity of hexameric His6-LAP-As on Xaa-Leu and Leu-Xaa dipeptides was tested. Most substitutions of Lys354 (a catalytic residue) resulted in His6-LAP-As that cleaved dipeptides at slower rates. The Glu429 mutants (a Zn2+-binding residue) had more diverse phenotypes. Some mutations abolished activity and others retained partial or complete activity. The E429D His6-LAP-A enzyme had Km and kcat values similar to the wild-type His6-LAP-A. One catalytic (Arg431) and one Zn-binding (Asp347) residue were essential for His6-LAP-A activity, as most R431 and D347 mutant His6-LAP-As did not hydrolyze dipeptides. The R431K His6-LAP-A that retained the positive charge had partial activity as reflected in the 4.8-fold decrease in kcat. Surprisingly, while the D347E mutant (that retained a negative charge at position 347) was inactive, the D347R mutant that introduced a positive charge retained partial activity. A model to explain these data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号