首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid poplar trees were exposed to eleven organic compounds in hydroponic systems. The eleven contaminants were common pollutants with a wide range of physio-chemical properties such as the octanol-water partition coefficient, Henry's constant, vapor pressure, and molecular weight. Contaminants, 14C-labeled, were introduced into the root zone, and contaminant transport and fate were examined. Aqueous concentrations were monitored throughout each experiment as was vapor phase concentrations in the air stream passing over the leaves. At experiment conclusion, plant tissues were oxidized to determine 14C concentrations. The uptake, distribution, and volatilization of these contaminants varied greatly among the 11 contaminants in the study. Uptake and translocation of the contaminants ranged from < 0.3% (of the applied 14C-labeled compound) for 1,2,4-trichlorobenzene to 20% for benzene. Volatile compounds were volatilized from the leaves. Volatilization in the transpiration stream was related to the vapor pressure of the compound. The fate and transport mechanisms investigated in this study provide valuable insight into the potential fate of contaminants in full-scale phytoremediation.  相似文献   

2.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

3.
Efforts to improve models of terrestrial productivity and to understand the function of tropical forests in global carbon cycles require a mechanistic understanding of spatial variation in aboveground net primary productivity (ANPP) across tropical landscapes. To help derive such an understanding for Borneo, we monitored aboveground fine litterfall, woody biomass increment and ANPP (their sum) in mature forest over 29 months across a soil nutrient gradient in southwestern Kalimantan. In 30 (0.07 ha) plots stratified throughout the watershed (∼340 ha, 8–190 m a.s.l.), we measured productivity and tested its relationship with 27 soil parameters. ANPP across the study area was among the highest reported for mature lowland tropical forests. Aboveground fine litterfall ranged from 5.1 to 11.0 Mg ha−1 year−1 and averaged 7.7 ± 0.4 (mean ± 95 C.I.). Woody biomass increment ranged from 5.8 to 23.6 Mg ha−1 year−1 and averaged 12.0 ± 2.0. Growth of large trees (≥60 cm dbh) contributed 38–82% of plot-wide biomass increment and explained 92% of variation among plots. ANPP, the sum of these parameters, ranged from 11.1 to 32.3 Mg ha−1 year−1 and averaged 19.7 ± 2.2. ANPP was weakly related to fine litterfall (r 2 = 0.176), but strongly related to growth of large trees at least 60 cm dbh (r 2 = 0.848). Adjusted ANPP after accounting for apparent “mature forest bias” in our sampling method was 17.5 ± 1.2 Mg ha−1 year−1.Relating productivity measures to soil parameters showed that spatial patterning in productivity was significantly related to soil nutrients, especially phosphorus (P). Fine litterfall increased strongly with extractable P (r 2 = 0.646), but reached an asymptote at moderate P levels, whereas biomass increment (r 2 = 0.473) and ANPP (r 2 = 0.603) increased linearly across the gradient. Biomass increment of large trees was more frequently and strongly related to nutrients than small trees, suggesting size dependency of tree growth on nutrients. Multiple linear regression confirmed the leading importance of soil P, and identified Ca as a potential co-limiting factor. Our findings strongly suggest that (1) soil nutrients, especially P, limit aboveground productivity in lowland Bornean forests, and (2) these forests play an important, but changing role in carbon cycles, as canopy tree logging alters these terrestrial carbon sinks. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

5.
Joslin  J. Devereux  Wolfe  Mark H. 《Plant and Soil》1998,204(2):165-174
In order to examine the below ground response of a mature upland hardwood forest in the southeastern U.S., to increases and decreases in water inputs, the gross production, mortality, and net production of fine roots were examined over the first and third years of a long-term water manipulation experiment (Throughfall Displacement Experiment). Treatments involved a 33% decrease (DRY), 33% increase (WET), and ambient (AMB) levels of throughfall to the forest floor, begun in July, 1993. Video images of roots appearing on minirhizotron faces installed on both upper and lower slopes were recorded biweekly to a depth of 90 cm from April through October of 1994 and of 1996. Comparisons were made between treatments in amounts of new root elongation, root mortality, and calculated net root production. Minirhizotron observations during 1994 growing season, immediately following winter 1994 installation, revealed a strong effect of installation disturbance and were therefore not considered valid reflections of the response of the stand to the treatments. The 1996 data, on the other hand, exhibited absence of installation biases inherent in 1994 data because of a longer period since treatment initiation (2 2/3 yr vs. 8 mths), and favorable root growth conditions in all treatments during a greater portion of the year. The 1996 data were, therefore, considered realistic measures of below ground treatment responses. During 1996, net root production at 0-30 cm depth, at the upper slope positions, was significantly greater in DRY than in WET and AMB. Net root production was also greater at the lower slope position, but not significantly so. Treatment differences were the result of gross root production, as patterns of mortality did not differ across treatments. Nor were there significant treatment differences at depths below 30 cm. Whether trees in DRY produced more roots to replace root biomass lost during a previous drought year, or whether a new root:shoot ratio was beginning to develop in response to treatments, will require observations from the response of the stand in future years to be determined.  相似文献   

6.
Estimating changes in belowground biomass and production is essential for understanding fundamental patterns and processes during ecosystem development. We examined patterns of fine root production, aboveground litterfall, and forest floor accumulation during forest primary succession at the Mt. Shasta Mudflows ecosystem chronosequence. Fine root production was measured using the root ingrowth cores method over 1 year, and aboveground litterfall was collected over 2 years. Fine root production increased significantly with ecosystem age, but only the youngest ecosystem was significantly different from all of the older ecosystems. Root production was 44.5 ± 13.3, 168.3 ± 20.6, 190.5 ± 33.8, and 236.3 ± 65.4 g m−2 y−1 in the 77, 255, 616, and >850-year-old ecosystems, respectively. Generally, aboveground litterfall and forest floor accumulation did not follow the same pattern as root production. The relative contribution of fine root production to total fine detrital production increased significantly with ecosystem age, from 14 to 49%, but only the youngest ecosystem was significantly different from all of the older ecosystems. Fine root production was significantly correlated with some measures of soil fertility but was not correlated with leaf or total litterfall, or forest floor accumulation. It was best predicted by soil N concentration alone, but this relationship may not be causal, as soil N concentration was also correlated with ecosystem age. For the oldest ecosystem, fine root production was also measured using the sequential intact cores/compartment-flow model method, and the difference between the two estimates was not significant. Our study suggests that the relative contribution of fine roots to fine detrital production, and hence to soil organic matter accumulation, may increase during forest primary succession.  相似文献   

7.
The efflux of carbon from soils is a critical link between terrestrial ecosystems and the atmosphere. Current concerns about rising atmospheric carbon dioxide (CO2) concentrations highlight the need to better understand the dynamics of total soil respiration (TSR, sum of root and heterotroph respiration) in changing environments. We investigated the effects of exotic earthworm invasion on TSR, fine-root distributions, and aboveground litterfall flux in two sugar maple-dominated forests in two locations in New York State, USA. The Arnot Forest in central New York was harvested in the late 19th century and has no history of cultivation. Tompkins Farm in eastern New York regenerated following abandonment from cultivation approximately 75 years ago. Arnot had 20% higher total soil CO2 efflux (880 g C m–2year–1) than Tompkins (715 g C m–2year–1). The presence of earthworms had no influence on TSR at either location. However, fine-root (< 1 mm diameter) biomass in earthworm plots (350 g/m2) was significantly lower than in worm-free reference plots (440 g/m2) at Arnot. Fine-root nitrogen (N) concentrations were not influenced by earthworms, and total fine-root N content was significantly reduced in the presence of earthworms at Arnot. Our results indicate that the presence of exotic earthworms is not presently affecting net C emission from soil in these forests. They also suggest a change in root function in earthworm plots that is not associated with higher fine-root N concentration, but that increases efficiency of nutrient uptake and also may enhance the belowground supply of C for heterotroph metabolism.  相似文献   

8.
9.
Soil heavy metal pollution has become a worldwide environmental issue that has attracted considerable public attention, largely from the increasing concern for the security of agricultural products. Heavy metals refer to some metals and metalloids possessing biological toxicity, such as cadmium, mercury, arsenic, lead, and chromium. These elements enter the soil agro-ecosystem through natural processes derived from parent materials, and through anthropogenic activities. Heavy metal pollution poses a great threat to the health and well-being of organisms and human beings due to potential accumulation risk through the food chain. Remediation using chemical, physical, and biological methods has been adopted to solve the problem. Phytoremediation has proven to be a promising alternative to conventional approaches as it is cost effective, environmentally friendly, and aesthetically pleasing. To date, based on the natural ability of extraction, approximately 500 taxa have been identified as hyperaccumulators of one or more metals. In addition, further research integrating biotechnological approaches with comprehensive multidisciplinary research is needed to improve plant tolerance and reduce the accumulation of toxic metals in soils. This review discusses harmful effects, sources of heavy metals, and the remediation technologies for soil contaminated by heavy metals.  相似文献   

10.
Agricultural drainage waters and industrial effluents often consist of waste waters laden with salts, boron (B), selenium (Se), molybdenum (Mo), and other contaminants. However, increasing shortages of high-quality water in arid and semiarid regions and increasing demands to maintain the water quality in rivers, lakes, streams, and groundwater have made water reuse an imperative. Trees have been viewed as potential candidates for wastewater reuse because of their capacities for high evapotranspiration, high growth rates, and abilities to accumulate salts and specific ions in a marketable product that is not biologically hazardous. Clones of eight hybrid poplar (Populus spp.) crosses were tested for salt tolerance and ion uptake characteristics in a sand culture study in Riverside, CA. After hardwood cuttings were planted and established under nonsaline conditions, young saplings were treated with artificial waste waters containing different levels of salts, Se, and B. High salt concentrations reduced growth and led to leaf damage and shedding; however, Se and B had no detrimental effect on growth. Salinity affected Se and B accumulation patterns in leaves. A significant degree of genetic variation in salt tolerance was noted among the clones. The salinity at which dry weight was reduced ranged from about 3.3 to about 7.6 dS m-1 depending on clone, and the relative decrease in dry weight yield with increasing salinity varied among clones and ranged from about 10 to 15% per dS m-1. This would indicate that poplars, whereas certainly more salt tolerant than avocado trees, are significantly less salt tolerant than eucalyptus. Leaf C1 concentrations increased in relation to the C1 concentrations in the irrigation waters, but also were subject to clonal variation. Salt tolerance in poplar was generally related to C1 in the leaves and stems but was also influenced by growth and vigor characteristics, as well as the allometric relationships between leaves and stems that influenced the sinks in which ions could accumulate before reaching toxic levels.  相似文献   

11.
Two samples of oily waste organics (OWO) from petroleum wells were added to heath soils from Tierra del Fuego, Argentina, and the effects on hydrocarbon leaching, microbial population, and plant growth were studied. These mixtures and a control soil were subjected to four deionized water leachates. For each leachate, total petroleum hydrocarbons (TPH), aliphatic hydrocarbons (ALH), aromatic hydrocarbons (ARH) with three or fewer rings, ARH with more than three rings, and oil and grease (O&G) were measured. After leaching, six Dactylis glomerata L. plants were grown in each soil column. Plant growth and the total number of aerobic and nitrifier microorganisms were measured in soil. The 10% OWO sample increased the TPH in the leachate, but the 1% sample did not. The ALH, ARH, and O&G of each leachate followed patterns similar to that for TPH. Plant growth diminished and the total number of aerobic and nitrifier microorganisms decreased with increasing OWO, especially when the OWO was from a fresh residue rather than an aged residue. The greater inhibitive effect of fresh residue on plant growth was attributed to a higher concentration of light hydrocarbons, which are more toxic than heavy hydrocarbons. For soil with 1% OWO added, the TPH and other organics did not differ from the control soil. This result, combined with the 10-year average annual rainfall and the water table elevation at the site, suggests that the risk of contaminating the water table is relatively low. Thus, a 1% addition of OWO in soil would be appropriate to use in landfarming of OWO.  相似文献   

12.
A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to estimate fine root production, two methods were used to estimate fine root mortality, and decomposition was estimated using the buried bag technique. During both 1986 and 1987, fine root elongation began in early April, peaked during July and August, and nearly ceased by mid-October. Mean fine root ( 3 mm diameter) biomass in the surface 28-cm was 2.5 t ha–1 and necromass was 2.9 t ha–1. Annual decomposition rates ranged from 17 to 30% beneath the litter and 27 to 52% at a depth of 10 cm. Depending on the method used for estimation, fine root production ranged from 2.0 to 2.9 t ha–1, mortality ranged from 1.8 to 3.7 t ha–1 yr–1, and decomposition was 0.9 t ha–1 yr–1. Thus, turnover ranged from 0.8 to 1.2 yr–1. The nutrients that cycled through fine roots annually were 4.5–6.1 kg Ca, 1.1–1.4 kg Mg, 0.3–0.4 kg K, 1.2–1.7 kg P, 20.3–27.3 kg N, and 1.8–2.4 kg S ha–1. Fine root turnover was less important than leaf litterfall in the cycling of Ca and Mg and was similar to leaf litterfall in the amount of N, P, K and S cycled.  相似文献   

13.
In this study, we investigated the relationship between the seasonality of vegetation cover and that of fine root processes in a man-made forest in northern Belgium. Due to their contrasting foliar development, we expected different seasonal patterns of fine root growth and standing biomass between Pedunculate oak (Quercus robur L.), and Scots pine (Pinus sylvestris L.). Biomass and necromass of fine and small roots were estimated by repeated core sampling in February, April, June, August and October 2003. Measurements showed that Pedunculate oaks maintained more live fine roots in winter than Scots pines. However, Scots pines produced more than twice as much fine roots in spring, such that in summer both species had similar root mass. Scots pine root production started before-, but declined during leaf unfolding. Pedunculate oak roots, in contrast, started elongating only after bud break. For both species, fine root production peaked in JuneJuly, but was more than offset by drought-induced mortality at the end of July and early August. Summer drought in 2003 was exceptionally long and intense, significantly reducing leaf area, killing most new roots, and inhibiting root decomposition, such that the obtained results cannot be typical for this forest.  相似文献   

14.
We used minirhizotrons and micro-video technology to study fine root production, mortality and standing root crop dynamics in an intensively managed sweetgum (Liquidambar styraciflua L.) coppice. The experiment was a split-plot design with two levels of fertilization. Low-level treatment plots received 560 kg ha-1 yr-1 fertilizer (19:9:19 NPK) via a drip irrigation system and high-level treatment plots received twice this amount. Approximately 150 cm yr-1 irrigation was applied to all treatments. There were no significant treatment differences in daily average fine root production or mortality. The phenology of fine root production and mortality, however, was characterized by strongly seasonal asynchrony. Production increased throughout the summer, peaked in September and declined sharply over the winter. Root mortality was not observed in either treatment until August, and then increased significantly throughout the winter months. There were also no significant treatment differences in standing fine root length. Standing live root length was greatest in the fall and dead root length was greatest over the winter. Roots in the upper 25 cm of the soil profile appeared to be significantly more dynamic (i.e. greater production and mortality) than deeper roots in both treatments. High levels of fertilization apparently do not alter fine root dynamics at our sites, in contrast to fertilization responses observed in other, more nutrient-poor environments.  相似文献   

15.
The rapid turnover of the fine root system is a major pathway of carbon and nutrient flow from plant to soil in forest ecosystems. In order to quantify these fluxes there is a need to understand how fine root demography is influenced by edaphic, environmental and plant ontogenetic factors. We studied the influence of four major factors (season, depth, root diameter and tree age) on the survivorship and longevity of fine roots of Prunus avium L. (wild cherry) over two years in North East Scotland. Survival analysis of data derived from minirhizotron observations showed that, for the range of root diameters studied, an increase in root diameter of 0.1 mm was associated with a 16% decrease in the risk of death. Depth was also an important factor; roots present at a depth of 10 cm had significantly lower survivorship than did roots at all lower depths studied. The effects of tree age and season on root production were more complex. Roots of old trees were more likely to die in the spring and roots of young trees were more likely to die in the autumn. Our data illustrate the complex factors that must be taken into account when scaling up information from individual observations of root longevity to model the contribution of fine roots to C and nutrient fluxes in forest ecosystems.  相似文献   

16.
The abandoned Phillips sulfide mine in the critical Highlands watershed in New York has been shown to produce strongly acidic mine drainage (AMD) with anomalous metal contaminants in first-order streams that exceeded local water standards by up to several orders of magnitude (Gilchrist et al., 2009 Gilchrist, S., Gates, A., Szabo, Z. and Lamothe, P. J. 2009. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York. Environ. Geol., 57: 397409. [Crossref], [Web of Science ®] [Google Scholar]). The metal-sulfide-rich tailings also produce contaminated soils with pH < 4, organic matter < 2.5% and trace metals sequestered in soil oxides. A geochemical transect to test worst-case soil contamination showed that Cr, Co and Ni correlated positively with Mn, (r = 0.72, r = 0.89, r = 0.80, respectively), suggesting Mn-oxide sequestration and that Cu and Pb correlated with Fe (r = 0.76, r = 0.83, respectively), suggesting sequestration in goethite. Ubiquitous, yellow coating on the mine wastes, including jarosite and goethite, is a carrier of the metals. Geochemical and μ-SXRF analyses determined Cu to be the major soil contaminant. μ-SXRF also demonstrated that the heterogeneous nature of the soil chemistry at the micro-meter scale is self-similar to those in the bulk soil samples. Generally metals decreased, with some fluctuations, rapidly downslope through suspension of fines and dissolution in AMD leaving the area of substantial contamination << 0.5 km from the source.  相似文献   

17.
格氏栲天然林与人工林细根生物量、季节动态及净生产力   总被引:59,自引:14,他引:59  
通过对福建三明格氏栲天然林及在其采伐迹地上营造的33年生格氏栲人工林和杉木人工林细根分布、季节动态与净生产力进行的为期3a(1999~2001)的研究,结果表明,格氏栲天然林、格氏栲和杉木人工林活细根生物量分别为4.944t/hm2、3.198t/hm2和1.485t/hm2,死细根生物量分别为3.563t/hm2、2.749t/hm2和1.287t/hm2;死细根生物量占总细根生物量的比例分别为41.9%、46.2%和46.4%;<0.5mm细根生物量占总细根生物量的比例分别为31.2%、29.4%和69.9%。3种林分活细根生物量和死细根生物量季节间差异显著(P<0.05),但年份间差异则不显著(P>0.05);活细根生物量最大值均出现在3月份,最小值一般出现在5~7月份或11~翌年1月份间。0~10cm表土层格氏栲天然林活细根生物量高达295.65g/m2,分别是格氏栲人工林和杉木人工林的2.4倍和8.1倍;该层格氏栲天然林活细根生物量占全部活细根生物量的59.8%,均高于格氏栲人工林(39.07%)和杉木人工林(24.51%)。格氏栲天然林、格氏栲人工林和杉木人工林细根分解1a后的干重损失率分别为68.34%~80.13%、63.51%~77.95%和47.69%~60.78%;年均分解量分别为8.747、5.143和2.503t/hm2;死亡量分别为8.632、5.148和2.492t/hm2;年均净生产量分别为8.797、5.425和2.513t/hm2,年周转速率分别为1.78、1  相似文献   

18.
The effects of CO2 elevation on the dynamics of fine root (FR) mass and ectomycorrhizal (EM) mass and colonization were studied in situ in a Florida scrub oak system over four years of postfire regeneration. Soil cores were taken at five dates and sorted to assess the standing crop of ectomycorrhizal and fine roots. We used ingrowth bags to estimate the effects of elevated CO2 on production of EM roots and fine roots. Elevated CO2 tended to increase EM colonization frequency but did not affect EM mass nor FR mass in soil cores (standing mass). However, elevated CO2 strongly increased EM mass and FR mass in ingrowth bags (production), but it did not affect the EM colonization frequency therein. An increase in belowground production with unchanged biomass indicates that elevated CO2 may stimulate root turnover. The CO2-stimulated increase of belowground production was initially larger than that of aboveground production. The oaks may allocate a larger portion of resources to root/mycorrhizal production in this system in elevated rather than ambient CO2.  相似文献   

19.
土地利用方式如何影响土壤理化性质及其作用深度一直是土壤生态学的研究热点,但是对松嫩平原退化盐碱地的相关研究匮乏。以肇东实验林场为研究对象,对8种植被类型的3个土层0~60 cm进行采样,共测定13个相关指标,结果显示:不同植被对根系密度、土壤pH、速效磷含量、土壤含水量、电导率、有机碳含量、全氮含量具有显著影响:其中前3个在不同土层的种间差异显著不同,而其余4个指标在60 cm土壤内种间差异一致。具体表现为:0~40 cm水曲柳根系密度最大,但在40~60 cm草地根系密度最大;黄檗的pH值在0~20 cm最大,但是在40~60 cm最小,而草地的pH值在20~60 cm均大于其他植物种类;速效磷含量在0~20、40~60 cm均是樟子松最小,但在20~40 cm层樟子松速效磷含量最高。草地土壤含水量26.7%,显著高于其它,是落叶松的1.8倍,其土壤电导率为503.4 μs·cm-1,明显大于其它各植被类型;杨树、樟子松的土壤有机碳含量显著低于黄檗、榆树、草地和水曲柳;土壤全氮含量最低的樟子松和杨树仅为草地的72.3%。所有其他养分包括全磷、全钾、速效钾不同植被间没有差异。上述结果说明,与原有植被草地相比,松嫩平原盐碱化土壤造林虽然能降低盐碱化,但同时对水分消耗较大,造林各个树种对土壤养分消耗相差不大,多体现在有机碳和氮。这些发现可为今后该地区种间差异比较、土壤肥力评价、土壤养分收支平衡等研究提供指导。  相似文献   

20.
Large parts of the remaining tropical moist forests of South-east Asia are encroached at their margins by selective logging, rattan harvesting and the establishment of small agroforest plantations under the rainforest canopy. These slight to heavy disturbances affect aboveground forest structure by reducing wood biomass and canopy cover; however, they may also have a profound impact on the belowground compartment. In a lower montane moist forest of Central Sulawesi, we studied the profile totals of fine root biomass (FRBtot, roots <2 mm until 50 cm of soil depth) and of fine root necromass (FRNtot), the vertical distribution of fine root mass, and the fine root live/dead ratio by root coring in 12 forest stands that represented a gradient in forest use (or disturbance) intensity (forest use type A: undisturbed natural forest, B and C: slightly or moderately disturbed forests with selective timber extraction, D: heavily disturbed cacao agroforest systems under a remaining rainforest cover; each forest types being replicated three times). FRBtot decreased significantly from forest A to the disturbed B, C and D forests, and reached less than 60% of the FRBtot value of A in the agroforest systems D. A similar decrease with increasing disturbance intensity was found for FRNtot. Forest disturbance intensity had no significant influence on the vertical distribution of fine root biomass in the profiles. According to correlation and principal components analyses, fractional canopy cover was the most important factor influencing FRBtot and FRNtot, whereas diameter at breast height, stand basal area, stem density, soil pH and base saturation had only a minor or no influence on root mass. A reduction in canopy cover from 90% (forest type A) to 75% (types C and D) was associated with a reduction in FRBtot by about 45% which indicates that timber extraction leads not only to canopy gaps but to corresponding ‘root gaps’ in the soil as well. We conclude that forest encroachment that is widespread in large parts of South-east Asia’s remaining rainforests significantly reduces tree fine root biomass and associated carbon sequestration, even if it is conducted at moderate intensities only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号