首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deposition of toxic munitions compounds, such as hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine (RDX), on soils around targets in live‐fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co‐contaminating explosive 2, 4, 6‐trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild‐type plants. Soil columns planted with the best‐performing switchgrass line were able to prevent leaching of RDX through a 0.5‐m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater.  相似文献   

2.
The ability of bacteria to influence organisms that they associate with via metabolite production is one of the hallmarks of microbial interactions. One metabolite of interest is the metabolic poison cyanide. Production of this metabolite is an unique characteristic of certain bacteria that inhabit a wide array of habitats ranging from the human body to the rhizosphere. This review focuses on four targets of cyanogenic bacteria: the human lung, plant pathogens, plants and invertebrates. For a number of cyanogenic bacteria, the contribution of cyanide to the interaction has been rigorously tested using mutants altered in cyanide production. Both deleterious and stimulatory effects of cyanogenic bacteria on other organisms have been documented. In addition, the HCN synthase‐encoding gene cluster hcnABC has served as a marker of cyanogenic capability in the soil environment revealing both genetic diversity at this locus and regulatory influences by other organisms. The pervasive nature of cyanogenesis in a number of different ecological contexts encourages exploration of this bacterial ability and its possible optimization for improving human health, crop production and pest control.  相似文献   

3.
Miscanthus × giganteus and Panicum virgatum are potential promising bioenergy feedstock crops suitable for the temperate zone. The energy efficiency and sustainability of bioenergy production could be improved by reducing their fertilizer inputs – particularly energy intensive nitrogen fertilizers. Miscanthus is known to benefit from nitrogen fixation by associative diazotrophs. However, because the effects of edaphic‐, management‐, and plant‐related factors on feedstock‐associated diazotroph communities have not yet been characterized, it is not currently possible to optimize the nitrogen contribution to feedstock crops from associated diazotroph communities. To address this critical knowledge gap, we characterized the bacterial and diazotroph communities in the rhizosphere and endophytic compartments of both species at eight research sites across Illinois. We also quantified the nifH gene abundance in the rhizosphere soil as well as a range of soil chemistry parameters at these sites. Multivariate statistical analyses revealed that diazotroph and bacterial communities in the rhizosphere varied primarily among sites, with very small differences between host species. Conversely, diazotroph and bacterial communities in the endophytic compartments differed significantly between plant species, but did not vary substantially among sites. Finally, nifH gene abundance in the rhizospheres of both species varied substantially from site to site and was positively correlated with soil iron concentration as well as soil ammonium concentration, and negatively correlated with abundance of other soil nutrients including calcium, total nitrogen, and nitrates. These results indicate the potential edaphic drivers of associative diazotroph communities in feedstock rhizospheres and suggest that manipulating bioavailable iron content in the soil is a potential direction for investigating the optimization of these communities to improve their nitrogen contribution to crops.  相似文献   

4.
Physiological and vegetative performances of three prairie grasses were investigated to assess their adaptation to soil conditions at two strip mine sites and a nearby railroad prairie. Additionally, rhizomes of the species were transplanted to a pot experiment and grown in both field soil and greenhouse potting medium to investigate the extent to which plants are limited under field conditions. Field measurements of photosynthetic rate and stomatal conductance to water vapor were made on the three species monthly from May to late August. Gas exchange measurements on potted plants were made biweekly from early May to mid-July. In September, vegetative and flowering characteristics were measured on both field and potted plants. Field gas exchange rates were highest at one of the mines. Sorghastrum nutans had the highest rates at the mine sites, whereas Panicum virgatum had the highest rates at the prairie site. Potted plants from the prairie site usually exhibited the highest gas exchange rates, and Sorghastrum nutans had higher rates than Panicum virgatum and Andropogon gerardii. Potted plants in field soil generally had higher gas-exchange rates than plants growing in greenhouse potting medium, and potted plants had higher gas-exchange rates than field-grown plants. Vegetative and reproductive performance of field plants was highest at one of the mine sites. Potted plants in greenhouse medium had up to twice the vegetative and reproductive output as potted plants in field soil or plants growing in the field. The physiological and vegetative performance of these species indicates that they are well adapted to the soil conditions at these strip mine sites, and that they are a viable alternative to nonnative plantings for restoration.  相似文献   

5.
Abstract

Hydroxynitrile lyases (HNLs) are sought-after, stereo-selective biocatalysts used in the agrochemical, pharmaceutical and fine chemical industries to produce cyanohydrin enantiomers. There are several approaches for the discovery of HNLs, most of which are methodologically demanding and not suitable for high-throughput. Bioprospecting studies to date have also been constrained/limited to commercialised plants or botanical gardens, leaving a vast majority of plant species untested for HNL activity or cyanogenesis. To increase the rate of discovery of HCN liberating plants, we devised a Feigl-Anger microfuge tube that is portable and capable of high throughput detection of naturally cyanogenic plants. A workflow suitable for detecting plant candidates containing extractable, novel HNLs was subsequently applied. In this study, we screened over 600 plants for cyanogenic activity as well as the ability to degrade racemic mandelonitrile. We detected 33 plants able to degrade racemic mandelonitrile, of which, 25 were identified to the species level. Six of these plants were found to be naturally cyanogenic. Protein extracts from 5 of the naturally cyanogenic plants retained the ability to degrade racemic mandelonitrile pointing to five yet undescribed enzymes in the species Achyranthes aspera, Davallia trichomonoides, Morus mesozygia, Polypodium aureum “Mandaianum”, and Thelypteris confluens. In contrast, although Acalypha glabrata was found to be naturally cyanogenic, the protein extract did not break down racemic mandelonitrile. Here, we used racemic mandelonitrile as substrate and detected enzymes with mandelonitrile lyase activity, however, any cyanohydrin could be used as part of the approach taken here to detect novel HNLs specific to the substrate utilised.  相似文献   

6.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   

7.
Cyanogenic glycosides are ancient biomolecules found in more than 2,650 higher plant species as well as in a few arthropod species. Cyanogenic glycosides are amino acid-derived β-glycosides of α-hydroxynitriles. In analogy to cyanogenic plants, cyanogenic arthropods may use cyanogenic glycosides as defence compounds. Many of these arthropod species have been shown to de novo synthesize cyanogenic glycosides by biochemical pathways that involve identical intermediates to those known from plants, while the ability to sequester cyanogenic glycosides appears to be restricted to Lepidopteran species. In plants, two atypical multifunctional cytochromes P450 and a soluble family 1 glycosyltransferase form a metabolon to facilitate channelling of the otherwise toxic and reactive intermediates to the end product in the pathway, the cyanogenic glycoside. The glucosinolate pathway present in Brassicales and the pathway for cyanoalk(en)yl glucoside synthesis such as rhodiocyanosides A and D in Lotus japonicus exemplify how cytochromes P450 in the course of evolution may be recruited for novel pathways. The use of metabolic engineering using cytochromes P450 involved in biosynthesis of cyanogenic glycosides allows for the generation of acyanogenic cassava plants or cyanogenic Arabidopsis thaliana plants as well as L. japonicus and A. thaliana plants with altered cyanogenic, cyanoalkenyl or glucosinolate profiles.  相似文献   

8.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

9.
The objective of this study was the evaluation of seven forage and conservation crop species for phytoremediation of trinitrotoluene (TNT) and pyrene-contaminated soils. TNT and pyrene were added to soil at 100 mg kg-1. Crop species screening studies were conducted in a greenhouse and growth chambers on two soil types with different organic matter contents. Under high soil organic matter conditions, adsorption or covalent binding to the soil organic matter appeared to be a dominant force of removal limiting TNT and pyrene availability. In both soil types, pyrene dissipation could not be attributed to the presence of plants. However, in soils with lower organic matter content, all of the plant species treatments showed a significantly higher degree of TNT transformation compared with the unplanted control. Statistically significant differences in TNT transformation were observed among crop species grown in the low OM soil. Reed canary grass (Phalaris arundinacea L.) and switchgrass (Panicum virgatum L.) were the most effective species in enhancing TNT transformation. Our data indicated that use of plants was effective for phytoremediation of TNT-contaminated low OM content soils, but did not have any significant effect on pyrene dissipation. Based on these observations, it appears that plant-soil-contaminant interactions are very specific, and this specificity determines the effectiveness of phytoremediation schemes.  相似文献   

10.
Thirty-six plant species of different agronomic importance, size, dry matter production, and tolerance to heavy metals were evaluated for Cr(III) and Cr(VI) uptake and accumulation as influenced by rate, form, source, and chelate application to a Cr-contaminated soil. There was a significant difference in the degree of tolerance, uptake, and accumulation of Cr among plant species. Sunflower (Helianthus annuus) was the least tolerant to Cr, and Bermudagrass (Cynodon dactylon) and switchgrass (Panicum virgatum) were the most tolerant. Indian mustard (Brassica juncea, cv 426308) and sunflower accumulated more Cr than other agricultural plant species. There was no inhibition of growth and little Cr accumulation in the presence of Cr(III) in soil, but most of the plant species that were treated with Cr(VI) hyperaccumulated Cr and died. EDTA chelate added to soil enhanced Cr(III) accumulation in some plants. The phytoremediation potential of the plant species tested was limited because Cr was accumulated in the plant roots and a high concentration in the shoots was toxic to plants. The difference in behavior between Cr(III) and Cr(VI) and their importance in soil and environment contamination should be the basis for remediation strategies.

  相似文献   


11.
Ecological risk assessments for grass species with novel traits are advisable, or required, in order to identify potential environmental harms prior to large-scale cultivation. Credible risk assessments are built upon knowledge of the communities that could be negatively affected by crop-to-wild gene flow, new weeds, or invasive plants. This study focused on two cultivated grasses with different life histories: the exotic, weedy Agrostis stolonifera (creeping bentgrass) and the native Panicum virgatum (switchgrass). Vascular plant communities were analyzed in 190 transects (50 m) in ten habitat types across two ecoregions (inland and coastal) in the northeastern U.S. Ordination plots and dendrogram analysis showed clustering of inland plant community assemblages within habitat types, while coastal plant communities were similar across the habitats studied. Agrostis and Panicum species had unequal distribution across the habitat types and ecoregions. Agrostis species were more common in the inland ecoregion and habitats receiving moderate management or disturbance events. In both ecoregions, A. stolonifera had high co-occurrence values with other exotic Agrostis species, suggesting potential for interspecific gene flow. P. virgatum was most common in inland roadside and wasteland habitats, but was distributed equally in the three coastal habitats. Co-occurrence between P. virgatum and congenerics was infrequent, although one transect had both P. virgatum and the state-listed coastal species Panicum amarum. This is the first study to characterize Agrostis and Panicum plant communities and distribution providing the basis for ecological risk assessments, coexistence-strategies, and geographic exclusion zones.  相似文献   

12.
Zagrobelny M  Møller BL 《Phytochemistry》2011,72(13):1585-1592
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.  相似文献   

13.
The ability of Phaseolus vulgaris, Mentha aquatica, and Pteris cretica to release arsenic (As) species from contaminated soil was tested in rhizobox experiments in three soils differing in their physicochemical parameters and total and mobile As concentration. Relatively low uptake of arsenic by P. vulgaris and M. aquatica resulted in very low and ambiguous changes in rhizosphere soil compared to bulk soil. However, there were observed differences in the distribution of the mobile As portion in soil to individual As species as affected by plant species and/or plantation conditions of these plants. Higher percentage of mobile arsenite in mint rhizosphere seems to be related to more reducing conditions during cultivation of these wetland plants. P. cretica planted in the soils containing between 36 and 1436 mg As kg−1 was able to accumulate between 80 and 500 mg As kg−1 in aboveground biomass. The extractable concentrations of As compounds in rhizosphere soil of P. cretica showed a clear depletion of arsenate (representing more than 90% of extractable arsenic) with the distance from plant roots. However, the As uptake mechanisms, as well as As transformation within hyperaccumulating fern plants, differ substantially from those in higher plants. Therefore the finding of suitable higher plant tolerant to the As soil contamination with good ability to accumulate As in aboveground biomass remains for the further research.  相似文献   

14.
In this experiment the separate and interactive effects of grazing of vesicular-arbuscular mycorrhizal hyphae by collembola and of relative germination date on competition between the mycorrhizal perennial grassPanicum virgatum and the non-mycorrhizal annual cruciferBrassica nigra were investigated. In the absence of competition,P. virgatum mass and P uptake were not affected by collembola grazing; grazing did reduce tissue N concentration and root: shoot ratio. Competition fromB. nigra plants of the same age/size (“simultaneous competition”) significantly reducedP. virgatum total, root, and shoot mass relative to control plants not subject to competition. In contrast, when in competition,B. nigra plants did not differ in biomass fromB. nigra controls grown without competition. Simultaneous competition also reduced N and P uptake byP. virgatum, but not byB. nigra. Grazing by collembola during simultaneous competition increased the differences in nutrient uptake and tended to shift the competitive balance further toward the non-mycorrhizalB. nigra. WhenP. virgatum plants were subjected to competition fromB. nigra plants which germinated three weeks later (“offset competition”) the situation was reversed: offsetB. nigra plants were negatively affected by competition while the larger, olderP. virgatum plants were not. Thus, relative germination date is important in determining the relative competitive ability of these two species. Grazing by collembola did not affect offset competition. The grazing of VAM hyphae by collembola appears to increase N availability in this experimental system. Under simultaneous competition, this N is taken up by the more extensive root system ofB. nigra; under offset conditions, the root system of the smallerB. nigra plants is insufficient to take advantage of the added resources. Thus, we suggest that grazing-induced transient changes in nutrient availability and the differential abilities of the two species to make use of these added resources constitute the mechanisms by which relative germination date and collembola grazing influence competition.  相似文献   

15.
Orobanche cumana Wallr. (sunflower broomrape) is a devastating root parasitic weed, causing enormous crop losses worldwide. The question was whether or not switchgrass has the potential to be a ‘trap crop’ for O. cumana control. To answer this question, the field experiments, pot experiments, and laboratory experiments were conducted in this study. The ability of nine switchgrass (Panicum virgatum L.) cultivars to induce O. cumana seeds germination was tested. Results indicated that root extracts shoot extracts, rhizosphere soil, and root exudates from switchgrass induced O. cumana germination. Ability to induce germination varied significantly among growing stages, with the earlier part of growing season (grown for 2 weeks) generally inducing the highest O. cumana germination rates. The methanol was a more suitable solvent than distilled water for extracting germination stimulants from switchgrass plants. Ten-fold dilutions of the extracts generally induced higher germination rates than either undiluted or 100-fold dilutions. The germination rates of O. cumana seeds in shoot extracts treatments were positively correlated with those in the root extracts (R2 = 0.6397; p < 0.01) and negatively correlated with those in the rhizosphere soil treatments ( R2 = 0.4433; p < 0.05). In conclusion, it is believed that switchgrass is a potential trap crop for the control of root parasitic weed O. cumana.  相似文献   

16.
Production of cyanide through biological and environmental processes requires the detoxification of this metabolic poison. In the 1960s, discovery of the β ‐cyanoalanine synthase ( β ‐CAS) pathway in cyanogenic plants provided the first insight on cyanide detoxification in nature. Fifty years of investigations firmly established the protective role of the β ‐CAS pathway in cyanogenic plants and its role in the removal of cyanide produced from ethylene synthesis in plants, but also revealed the importance of this pathway for plant growth and development and the integration of nitrogen and sulfur metabolism. This review describes the β ‐CAS pathway, its distribution across and within higher plants, and the diverse biological functions of the pathway in cyanide assimilation, plant growth and development, stress tolerance, regulation of cyanide and sulfide signalling, and nitrogen and sulfur metabolism. The collective roles of the β ‐CAS pathway highlight its potential evolutionary and ecological importance in plants.  相似文献   

17.
We examined the long-term success of prairie planting on a former strip mine in northeastern Illinois. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass). Total biomass was less than values published for other restored prairies (78 ± 4 g/m2to 298 ± 72 g/m2 for our site, as opposed to 302-489 g/m2 for the Trelease Prairie). Mycorrhizal inoculum potential (MIP) was variable across the site. There were also relatively few species of mycorrhizal fungi present as spores. Gigaspora sp., Scutellospora sp., Glomus sp., Glomus geosporum, and Glomus cf. fasciculatum were identified from spores. On a transect dominated by warm-season (C4) prairie grasses, MIP of rhizosphere soil collected under these species was lower than the MIP of rhizosphere soil collected under exotic cool-season (C3) grasses on a transect dominated by C3 species. On a transect with mixed warm-and cool-season vegetation, however, MIP did not differ under the two vegetation types. These results suggest that within-site patchiness rather than cover type is influencing MIP. Values of MIP were lower than those reported for native Illinois prairie.  相似文献   

18.
A phytoremediation growth chamber study was conducted to evaluate the contribution of soil microbial diversity to the contaminant degradation. Target contaminant removal from soil was assessed by monitoring concentrations of polycyclic aromatic hydrocarbons (PAHs), along with changes in the bacterial community structure over a time period of 10 months in the presence of tall fescue (Festuca arundinacea). Enhanced degradation of PAHs was observed in rhizosphere soil, with a maximum reduction in pyrene at a rate 36% higher than that noted for the unvegetated control. The dissipation of < 4-ring PAHs, 4-ring PAHs, and > 4-ring PAHs in unvegetated soil was 70%, 54%, and 49% respectively, whereas a higher dissipation rate was observed in tall fescue treated soil of 78%, 68%, and 61% at the end of the study. Microbial enumeration results showed greater total bacterial numbers and PAH-degrading bacteria in rhizosphere soil when compared to unvegetated soil. The results from the terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that there was a shift in the rhizosphere bacterial community during the phytoremediation process.  相似文献   

19.
Cell wall recalcitrance poses a major challenge on cellulosic biofuel production from feedstocks such as switchgrass (Panicum virgatum L.). As lignin is a known contributor of recalcitrance, transgenic switchgrass plants with altered lignin have been produced by downregulation of caffeic acid O‐methyltransferase (COMT). Field trials of COMT‐downregulated plants previously demonstrated improved ethanol conversion with no adverse agronomic effects. However, the rhizosphere impacts of altering lignin in plants are unknown. We hypothesized that changing plant lignin composition may affect residue degradation in soils, ultimately altering soil processes. The objective of this study was to evaluate effects of two independent lines of COMT‐downregulated switchgrass plants on soils in terms of chemistry, microbiology, and carbon cycling when grown in the field. Over the first two years of establishment, we observed no significant differences between transgenic and control plants in terms of soil pH or the total concentrations of 19 elements. An analysis of soil bacterial communities via high‐throughput 16S rRNA gene amplicon sequencing revealed no effects of transgenic plants on bacterial diversity, richness, or community composition. We also did not observe a change in the capacity for soil carbon storage: There was no significant effect on soil respiration or soil organic matter. After five years of establishment, δ13C of plant roots, leaves, and soils was measured and an isotopic mixing model used to estimate that 11.2 to 14.5% of soil carbon originated from switchgrass. Switchgrass‐contributed carbon was not significantly different between transgenic and control plants. Overall, our results indicate that over the short term (two and five years), lignin modification in switchgrass through manipulation of COMT expression does not have an adverse effect on soils in terms of total elemental composition, bacterial community structure and diversity, and capacity for carbon storage.  相似文献   

20.
Cyanogenesis in plants and arthropods   总被引:1,自引:0,他引:1  
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are regarded as having an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption, but recent investigations demonstrate additional roles as storage compounds of reduced nitrogen and sugar that may be mobilized when demanded for use in primary metabolism. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own defense against predators. A few species of arthropods (within diplopods, chilopods and insects) are able to de novo biosynthesize cyanogenic glucosides and some are able to sequester cyanogenic glucosides from their food plant as well. This applies to larvae of Zygaena (Zygaenidae). The ratio and content of cyanogenic glucosides is tightly regulated in Zygaena filipendulae, and these compounds play several important roles in addition to defense in the life cycle of Zygaena. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the involvement of hydrogen cyanide in male attraction and nitrogen metabolism. As more plant and arthropod species are examined, it is likely that cyanogenic glucosides are found to be more widespread than formerly thought and that cyanogenic glucosides are intricately involved in many key processes in the life cycle of plants and arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号