首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12   总被引:30,自引:20,他引:10       下载免费PDF全文
An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage lambda. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut(+) strains. UV irradiation induced mutations in a mutU4 strain, and phage lambda was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4.  相似文献   

2.
Wild-type and mutant (AB 1157 and K-12) strains of Escherichia coli were shown to synthesize the logarithmic growth phase, exometabolites reactivating UV-irradiated cells of producer strains. The exometabolites of the strain K-12 were of protein nature and had a molecular weight of no more than 10 kDa. The reactivating activity of these exometabolites was inversely related to bacterial survival and slightly increased under the influence of stress factors. The reactivating factor of Luteococcus casei had a cross-reactivating and protective effect on UV-irradiated cells of E. coli strain K-12. Due to activation of the reactivating factor after UV irradiation and heating, the cross-protective effect increased more than threefold. The reactivating effect remained unchanged under these conditions. The protein exometabolites of E. coli did not induce cross-stress response in L. casei.  相似文献   

3.
Prophage lambda induction in a recF143 mutant of E. coli K12 was studied. The recF143 (lambda) lysogen was inducible by UV irradiation or treatment with mitomycin C. However, the time required for the onset of derepression brought about by these treatments was longer in the recF143 mutant than in rec+ strains, suggesting that the induction pathway was altered in the recF143 mutant. The recF143 (lambda) lysogen was induced at very low doses of UV irradiation or mitomycin C treatment. Moreover, the presence of the recF143 mutation increased the sensitivity to thermal induction of a tif strain.  相似文献   

4.
对天冬氨酸转氨酶产生菌大肠杆菌XJ-1原生质体进行紫外-激光复合诱变筛选,结果表明,复合诱变对该菌的原生质体有明显的致死作用。以致死率和正突变率为指标,确定了紫外和He-Ne激光照射的最佳时间分别为45 s和40min。在此条件下对大肠杆菌原生质体进行紫外-激光复合诱变,得到3株高产菌株,分别命名为XJ-1-45、XJ-1-86和XJ-1-99,酶活较出发菌株XJ-1分别提高了12.82%、17.37%和26.27%。传代培养表明突变株生产性能稳定。  相似文献   

5.
The unicellular cyanobacterium Gloeocapsa alpicola contains both photoreactivation and excision repair mechanisms for correcting UV-induced damage to its cellular DNA. An 11.5 kb EcoRI fragment was isolated from a cosmid bank of G. alpicola and was shown to complement a recA deletion in Escherichia coli S.17 and JC10289. These recA strains showed increased survival to UV and methyl methanesulphonate (MMS) when transformed with the cyanobacterial DNA fragment, and also showed filamentation in response to UV irradiation. Preliminary analysis of the protein encoded by the cyanobacterial DNA fragment indicated a major protein of 39,000 Da; this is very similar in size to the recA protein of E. coli.  相似文献   

6.
The presence of the plasmid colicinogenic factor Ib-P9 in Escherichia coli wild type cells is shown to increase bacterial survival after UV irradiation and the action of N-methyl-N'-nitro-N-nitrosoguanidine. The ability of the plasmid to cause the UV protection is observed in uvrA, uvrB, uvrC, polA, recB, recF E. coli strains, but the plasmid does not restore the UV resistance of the mutant cells to the wild type level. The protective effect of the plasmid CoI Ib-P9 depends on the recA+lexA+ genotype of the cells. The inhibition of protein synthesis (amino acid starvation) before and after UV irradiation does not prevent the UV protection by ColIb-P9. The nature of the plasmid-associated repair functions is discussed.  相似文献   

7.
Functions of the Borrelia burgdorferi RecA protein were investigated in Escherichia coli recA null mutants. Complementation with B. burgdorferi recA increased survival of E. coli recA mutants by 3 orders of magnitude at a UV dose of 2,000 microJ/cm(2). The viability at this UV dose was about 10% that provided by the homologous recA gene. Expression of B. burgdorferi recA resulted in survival of E. coli at levels of mitomycin C that were lethal to noncomplemented hosts. B. burgdorferi RecA was as effective as E. coli RecA in mediating homologous recombination in E. coli. Furthermore, E. coli lambda phage lysogens complemented with B. burgdorferi recA produced phage even in the absence of UV irradiation. The level of phage induction was 55-fold higher than the level in cells complemented with the homologous recA gene, suggesting that B. burgdorferi RecA may possess an enhanced coprotease activity. This study indicates that B. burgdorferi RecA mediates the same functions in E. coli as the homologous E. coli protein mediates. However, the rapid loss of viability and the absence of induction in recA expression after UV irradiation in B. burgdorferi suggest that recA is not involved in the repair of UV-induced damage in B. burgdorferi. The primary role of RecA in B. burgdorferi is likely to be a role in some aspect of recombination.  相似文献   

8.
The principle of equi-effectivity of the product of intensity and exposure time (principle of Bunsen-Roscoe) of UV irradiation has been assumed to be valid for the inactivation of microorganisms in general. Earlier studies claimed higher survival of Escherichia coli B/r with fractionated irradiation compared with single-exposure survival. However, data on the inactivation effect of protraction of UV irradiation are not available. By means of a specially designed UV irradiation apparatus which secured absolute UV dose measurements throughout the experiments, the effects of variation of UV irradiation intensities (253.7 nm) and exposure times were tested on the inactivation of a bacterial virus (Staphylococcus aureus phage A994), a vegetative bacterial strain (E. coli ATCC 25922), and bacterial spores (Bacillus subtilis ATCC 6633) as well as three haploid laboratory strains (RC43a, YNN281, and YNN282) and two diploid strains (commercial bakery yeast strain and laboratory strain YNN281 x YNN282) or yeast (Saccharomyces cerevisiae) and spores of the latter diploid yeast strain. Each test organism was exposed to three UV intensities (0.02, 0.2, and 2 W/m2), with corresponding exposure times resulting in three dose levels for each intensity. Differences in inactivation rates were tested by analyses of variance and Newman-Keuls tests. Virus and bacteria showed no differences in inactivation rates by variation of intensities and exposure times within selected UV doses; hence, the principle of Bunsen-Roscoe could not be rejected for these strains. However, in the eukaryotic test strains of S. cerevisiae longer exposure times with lower intensities led to enhanced inactivation in both haploid and diploid strains, with a more pronounced effect in the diploid yeast strains, whereas in yeast spores in this dose rate effect could not be observed.  相似文献   

9.
Lysogenised verotoxigenic strains are the source of structural genes of verocytotoxins (stx-1 and stx-2) for the others intestinal bacili. The aim of the study was to estimate the ability of transfer of bacteriophages induced with UV irradiation from reference verotoxigenic strains of E. coli O157:H7 (CB571 and EDL933) into 125 wild-strains of bacili of Enterobacteriaceae family. None of tested recipient strains showed the production of cytotoxin on Vero and HeLa cell lines, what was acknowledged as the lack of six genes. Contrary to the laboratory strain of E. coli C600 none of 125 tested recipient strains accepted the phages. Obtained lysogenised laboratory strains of E. coli C600/CB571 and E. coli C600/EDL933, besides of the ability to produce verotoxins (with the presence of stx-1 and stx-2 genes), did not differ phenotypically and genotypically from parent strain of E. coli C600. The estimation of the ability to transfer of phages carried stx-1 and/or stx-2 genes was impossible because of too small number of tested wild strain of bacili or because of really low frequency of acceptation of phages by wild strains of intestinal bacili.  相似文献   

10.
Salmonella typhimurium strains with supX mutations are more sensitive than wild type to killing by ultraviolet (UV) irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered.  相似文献   

11.
Inactivation of bacterial strains derived from E. coli B, which differ in the DNA-repair capacity (exc-, pol- and rec-) was investigated after far and near UV irradiation. The same strains were also used as hosts for UV-irradiated phage T7. The injuries caused in bacteria and phages by radiation with longer wavelengths were reparable with greater difficulty and only to a lesser extent by the investigated repair mechanisms. We suppose that near UV affects cell proteins and that, as a result of this damage, the DNA-repair systems may be inhibited.  相似文献   

12.
Escherichia coli cells were killed by visible light irradiation in the presence of the photosensitizing dye, toluidine blue. Two uvrB mutant strains of E. coli K-12 (AB1885 and N3-1) were much more sensitive than the isogenic uvrA and uvrC strains to treatment with toluidine blue plus light, suggesting that the uvrB+ gene product was involved in repair of DNA damage induced by the treatment. The uvrB+ gene cloned in a high- or low-copy-number plasmid was transformed into the uvrB strain (AB1885). Although all the transformants showed the same resistance as its wild-type strain (AB1157) to UV irradiation, they were as sensitive as AB1885 was to treatment with toluidine blue plus light. The two uvrB strains were more sensitive to sodium dodecyl sulfate than the other strains, suggesting that these strains had a defect in the cell surface. A sodium dodecyl sulfate-resistant revertant obtained from AB1885 was more resistant than AB1885 was to treatment with toluidine blue plus light. The two uvrB strains (AB1885 and N3-1) appear to have a defective gene (tentatively called dvl) different from uvrB. Its map position was around 7 min on the E. coli map.  相似文献   

13.
When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr(-) and Rec(-) strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr(-) bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.  相似文献   

14.
Tn5 insertion mutations in the recN gene, and in what appears to be a new RecF pathway gene designated recO and mapping at approximately 55.4 min on the standard genetic map, were isolated by screening Tn5 insertion mutations that cotransduced with tyrA. The recO1504::Tn5 mutation decreased the frequency of recombination during Hfr-mediated crosses and increased the susceptibility to killing by UV irradiation and mitomycin C when present in a recB recC sbcB background, but only increased the sensitivity to killing by UV irradiation when present in an otherwise Rec+ background. The effects of these and other RecF pathway mutations on plasmid recombination were tested. Mutations in the recJ, recO, and ssb genes, when present in otherwise Rec+ E. coli strains, decreased the frequency of plasmid recombination, whereas the lexA3, recAo281, recN, and ruv mutations had no effect on plasmid recombination. Tn5 insertion mutations in the lexA gene increased the frequency of plasmid recombination. These data indicate that plasmid recombination events in wild-type Escherichia coli strains are catalyzed by a recombination pathway that is related to the RecF recombination pathway and that some component of this pathway besides the recA gene product is regulated by the lexA gene product.  相似文献   

15.
This study examined the effect of different apple cultivars upon the UV inactivation of Escherichia coli O157:H7 strains within unfiltered apple cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 10(6) to 10(7) CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895), and exposed to 14 mJ of UV irradiation per cm(2). Bacterial populations for treated and untreated samples were then enumerated by using nonselective media. E. coli O157:H7 ATCC 43889 showed the most sensitivity to this disinfection process with an average 6.63-log reduction compared to an average log reduction of 5.93 for both strains 933 and ATCC 43895. The highest log reduction seen, 7.19, occurred for strain ATCC 43889 in Rome cider. The same cider produced the lowest log reductions: 5.33 and 5.25 for strains 933 and ATCC 43895, respectively. Among the apple cultivars, an average log reduction range of 5.78 (Red Delicious) to 6.74 (Empire) was observed, with two statistically significant (alpha < or = 0.05) log reduction groups represented. Within the paired cultivar-strain analysis, five of eight ciders showed statistically significant (alpha < or = 0.05) differences in at least two of the E. coli strains used. Comparison of log reductions among the E. coli strains to the cider parameters of (o)Brix, pH, and malic acid content failed to show any statistically significant relationship (R(2) > or = 0.95). However, the results of this study indicate that regardless of the apple cultivar used, a minimum 5-log reduction is achieved for all of the strains of E. coli O157:H7 tested.  相似文献   

16.
H J Goodman  J R Parker  J A Southern  D R Woods 《Gene》1987,58(2-3):265-271
The recombinant plasmid pHG100, containing a 5.2-kb DNA fragment from Bacteroides fragilis, complemented defects in homologous recombination, DNA repair and prophage induction to various levels in an Escherichia coli recA mutant strain. There was no DNA homology between the cloned B. fragilis recA-like gene and E. coli chromosomal DNA. pHG100 produced two proteins with Mr of approx. 39,000 and 37,000 which cross-reacted with antibodies raised against E. coli RecA protein. The production of these proteins was not increased after UV induction. The cloned B. fragilis recA-like gene product did not enhance the production of native but defective E. coli RecA protein after UV irradiation.  相似文献   

17.
Three mutations, denoted lex-1, -2 and -3, which increase the sensitivity of Escherichia coli K-12 to ultraviolet light (UV) and ionizing radiation, have been found by three-factor transduction crosses to be closely linked to uvrA on the E. coli K-12 linkage map. Strains bearing these mutations do not appear to be defective in genetic recombination although in some conjugational crosses they may fail to produce a normal yield of genetic recombinants depending upon the time of mating and the marker selected. The mutagenic activity of UV is decreased in the mutant strains. After irradiation with UV, cultures of the strains degrade their deoxyribonucleic acid at a high rate, similar to recA(-) mutant strains. Stable lex(+)/lec(-) heterozygotes are found to have the mutant radiation-sensitive phenotype of haploid lex(-) strains.  相似文献   

18.
The plasmid pMucAMucB, constructed from the Haemophilus influenzae vector pDM2, and a similar plasmid, constructed from pBR322, increased the survival after UV irradiation of Escherichia coli AB1157 with the umu-36 mutation and also caused UV-induced mutation in the E. coli strain. In H. influenzae, pMucAMucB caused a small but reproducible increase in survival after UV irradiation in wild-type cells and in a rec-1 mutant, but there was no increase in spontaneous mutation in the wild type or in the rec-1 mutant and no UV-induced mutation.  相似文献   

19.
Multicopy plasmids carrying either the umuDC operon of Escherichia coli or its analog mucAB operon, were introduced into Ames Salmonella strains in order to analyze the influence of UmuDC and MucAB proteins on repair and mutability after UV irradiation. It was found that in uvr+ bacteria, plasmid pICV80:mucAB increased the frequency of UV-induced His+ revertants whereas pSE117:umuDC caused a smaller increase in UV mutagenesis. In delta uvrB bacteria, the protective role of pSE117 against UV killing was weak, and there was a great reduction in the mutant yield. In contrast, in these cells, pICV80 led to a large increase in both cell survival and mutation frequency. These results suggest that in Salmonella, as in E. coli, MucAB proteins mediate UV mutagenesis more efficiently than UmuDC proteins do. Plasmid pICV84:umuD+ C- significantly increased UV mutagenesis of TA2659: delta uvrB cells whereas in them, pICV77:mucA+ B- had no effect on mutability indicating the presence in Salmonella TA2659 of a gene functionally homologous to umuC.  相似文献   

20.
A F Mosin 《Microbios》1978,20(80):115-123
The reaction of complexes pf phage T1-cells of E. coli B or E. coli Bs-1 to UV irradiation was investigated. The complexes were irradiated at various stage of infection, and their survival, extent of Hcr and Phr, were evaluated. It was found that the UV resistance of phage DNA in the second half of the latent period fluctuates. Hcr after UV exposure at these stages of infection operates in a small volume. The ability of intracellular phage to photoreactivate when cells of E. coli B were infected is constant after irradiation at many stages of infection, except the early ones. In the complexes of phage T1-bacteria of E. coli Bs-1 this ability declines while infection is promoted. The daughter phage particles released from UV irradiated complexes undergo Phr and Hcr only after irradiation at the late stages of infection. This was not the cases when complexes of phage-bacteria were irradiated during the first half of the latent period. A possible tole of UV-damaged phage DNA in propagation of infection and in maturation of phage particles is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号