首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructural organization of the trout sperm nucleus was studied in ultrathin sections and spread preparations after partial decondensation of the nucleus with increasing NaCl concentrations. The obtained results suggest that the organization of the trout sperm chromatin is much more complex than a pure nucleoprotamine. Three types of complexes were observed. The first one results from the association of DNA with protamines. This complex appears as a fibrous network when partially decondensed nuclei are digested with DNase I indicating that at least a part of DNA remains protected by protamines and favours models accepting a colinear alignment of the latter on the DNA molecules. The second type of structures represent the DNA-protamine fibers compacted into dense clumps which appear as separate compaction units seen upon partial decondensation of the sperm nucleus. A third type are complexes of the ring-shaped granular bodies tightly associated with DNA and resisting high salt-urea and detergent treatment.  相似文献   

2.
Volume measurements were performed on intact bull and mouse sperm heads and amembranous sperm nuclei, both in the fully hydrated (fluid cell) and dehydrated (air-dried on glass coverslips) states by atomic force microscopy (AFM). Data were obtained by analyzing a small population of cells/nuclei, as well as by performing repeated measurements on single cells imaged following the addition of increasing concentrations of propanol. Results show that the volume of fully hydrated, intact sperm heads and amembranous sperm chromatin particles are at least twice the volume of their air-dried counterparts. Dehydration occurs rapidly in air, and the reduction in volume of chromatin induced by water loss appears to be completely reversible. These studies demonstrate that both mouse and bull sperm chromatin are extensively hydrated in the native state, and are not as compact as previous studies have suggested. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The DNA of most vertebrate sperm cells is packaged by protamines. The primary structure of mammalian protamine I can be divided into three domains, a central DNA binding domain that is arginine-rich and amino- and carboxyl-terminal domains that are rich in cysteine residues. In native bull sperm chromatin, intramolecular disulfide bonds hold the terminal domains of bull protamine folded back onto the central DNA binding domain, whereas intermolecular disulfide bonds between DNA-bound protamines help stabilize the chromatin of mature mammalian sperm cells. Folded bull protamine was used to condense DNA in vitro under various solution conditions. Using transmission electron microscopy and light scattering, we show that bull protamine forms particles with DNA that are morphologically similar to the subunits of native bull sperm chromatin. In addition, the stability provided by intermolecular disulfide bonds formed between bull protamine molecules within in vitro DNA condensates is comparable with that observed for native bull sperm chromatin. The importance of the bull protamine terminal domains in controlling the bull sperm chromatin morphology is indicated by our observation that DNA condensates formed under identical conditions with a fish protamine, which lacks cysteine-rich terminal domains, do not produce as uniform structures as bull protamine. A model is also presented for the bull protamine.DNA complex in native sperm cell chromatin that provides an explanation for the positions of the cysteine residues in bull protamine that form intermolecular disulfide bonds.  相似文献   

4.
The mitotic chromosome structure of 45S rDNA site gaps in Lolium perenne was studied by atomic force microscope (AFM) combining with fluorescence in situ hybridization (FISH) analysis in the present study. FISH on the mitotic chromosomes showed that 45S rDNA gaps were completely broken or local despiralizations of the chromatid which had the appearance of one or a few thin DNA fiber threads. Topography imaging using AFM confirmed these observations. In addition, AFM imaging showed that the broken end of the chromosome fragment lacking the 45S rDNA was sharper, suggesting high condensation. In contrast, the broken ends containing the 45S rDNA or thin 45S rDNA fibers exhibited lower density and were uncompacted. Higher magnification visualization by AFM of the terminals of decondensed 45S rDNA chromatin indicated that both ends containing the 45S rDNA also exhibited lower density zones. The measured height of a decondensed 45S rDNA chromatin as obtained from the AFM image was about 55–65 nm, composed of just two 30-nm single fibers of chromatin. FISH in flow-sorted G2 interphase nuclei showed that 45S rDNA was highly decondensed in more than 90% of the G2/M nuclei. Our results suggested that a failure of the complex folding of the chromatin fibers occurred at 45S rDNA sites, resulting in gap formation or break.  相似文献   

5.
To assess the structural stability of mammalian sperm nuclei and make interspecies comparisons, we microinjected sperm nuclei from six different species into hamster oocytes and monitored the occurrence of sperm nuclear decondensation and male pronucleus formation. The time course of sperm decondensation varied considerably by species: human and mouse sperm nuclei decondensed within 15 to 30 min of injection, and chinchilla and hamster sperm nuclei did so within 45 to 60 min, but bull and rat sperm nuclei remained intact over this same period of time. Male pronuclei formed in oocytes injected with human, mouse, chinchilla, and hamster sperm nuclei, but rarely in oocytes injected with bull or rat sperm nuclei. However, when bull sperm nuclei were pretreated with dithiothreitol (DTT) in vitro to reduce protamine disulfide bonds prior to microinjection, they subsequently decondensed and formed pronuclei in the hamster ooplasm. Condensed rat spermatid nuclei, which lack disulfide bonds, behaved similarly. The same six species of sperm nuclei were induced to undergo decondensation in vitro by treatment with DTT and detergent, and the resulting changes in nuclear size were monitored by phase-contrast microscopy and flow cytometry. As occurred in the oocyte, human sperm nuclei decondensed the fastest in vitro, followed shortly by chinchilla, mouse, and hamster and, after a lag, by rat and bull sperm nuclei. Thus species differences in sperm nuclear stability exist and appear to be related to the extent and/or efficiency of disulfide bonding in the sperm nuclei, a feature that may, in turn, be determined by the type(s) of sperm nuclear protamine(s) present.  相似文献   

6.
A variety of biochemical and histochemical techniques have been used to compare the composition of chromatin in sperm nuclei isolated from the epididymides of five mouse strains. The DNA content was determined by phosphorus analysis, deoxyribose analysis, absorption spectroscopy at 260 nm, and cytomorphometry following gallocyanine chrome alum staining. All four methods indicate that the mouse sperm nucleus contains approx. 3.3 pg DNA and that the DNA content does not vary significantly among the strains tested. Three different techniques, quantitative amino acid analysis, absorption spectroscopy at 230 nm, and sperm head density analysis in cesium chloride, were used to determine the protein content. Sperm nuclei from each strain of mouse were found to have a protein to DNA ratio of 0.9 and a chromatin protein content of 3 pg/nucleus. Comparisons of the basic proteins by disc gel electrophoresis demonstrate that the sperm nuclei contain only protamine and lack significant levels of somatic histones or transition proteins. The sperm from each strain contained both mouse protamine variants and the relative distribution of the two proteins did not appear to differ among strains. Using this information, we have been able to draw certain conclusions regarding DNA-protamine interactions and the mode of DNA packaging in the sperm nucleus. The most important of these is that the DNA in the mouse sperm nucleus cannot be packaged in nucleosomes. The protamines in sperm chromatin do not function as structural proteins, providing a subunit core around which the DNA is wrapped, but appear to completely neutralize the phosphodiester backbone of the DNA molecule, thereby minimizing the repulsion between neighboring segments of DNA and allowing it to be condensed into a biochemically inactive particle of genetic information.  相似文献   

7.
The packaging of DNA in the sperm of the house cricket (Gryllus bimaculatus) was investigated by microscopical and diffraction methods. The principle of DNA packaging in the cricket sperm is parallel bundling. This is in contrast with that in somatic cells, which assumes successive supercoiling. About 240 threads of DNA are bundled into one 300 A fiber, and then more than 200 fibers (300 A) are packed in a parallel manner in one nucleus. Therefore, DNA is oriented so that its helix axis is parallel with the long axis of the nucleus. This simple packaging of DNA is maintained by a newly discovered protein, 17 K protein; no histones were found. The packaging ratio (the ratio of the volume of DNA to that of the suprastructure) of the chromatin is about 1 and shows an effectiveness much higher than that of the nucleosome solenoid structure. The mode of packaging DNA in cricket sperm is different from the nucleosome structure, and is a quite new type of packaging.  相似文献   

8.
Changes in the location and structural organization of parental herpes simplex virus type 1 (HSV-1) DNA during its migration from the extracellular space to the interior of the nucleus of the target cell were examined by in situ hybridization using an HSV-1 DNA probe, specific DNA staining, and autoradiography after infection of cells with tritium-labeled viruses. In situ hybridization was carried out on denatured DNA to reveal as much as possible of the HSV-1 sequence present at the surface of the sections, and also on non-denatured DNA which revealed the presence of single-stranded portions of parental DNA, both prior to and during its intracellular migration. The results from in situ hybridization and autoradiography demonstrated that a short interval of about 15 min separated the initial contact of the viruses with the cells from the entry of parental viral DNA into the nucleus. In transit, morphologically intact nucleoids were released into the cytoplasm, and swollen nucleoids which contained partially decondensed viral DNA became detectable in the juxtanuclear cytoplasm and the periphery of the nucleus among the cell chromatin fibers. Completely decondensed parental viral DNA fibers could not be distinguished structurally from cellular DNA, but their position could be revealed by the in situ hybridization label. The infective DNA became randomly distributed within all compartments of the nucleus except the matrix-associated clusters of interchromatin granules.  相似文献   

9.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Precipitate resulting from interaction between certain intercalators, such as acridine orange (AO), and nucleic acids can be detected by electron microscopy. Formation of precipitate in nuclei of live cells is modulated by chromatin structure. Susceptibility of in situ DNA to precipitation was studied in mouse testicular germ cells during various stages of sperm maturation. DNA in round spermatid chromatin, similar to somatic cell euchromatin, was rather resistant to precipitation; the electron-dense precipitate was granular and randomly distributed. DNA in elongated spermatids was more susceptible to precipitation; the products were in the form of fibers. At early stages of spermatid maturation these fibers were distributed uniformly throughout the entire nucleus. At later stages, the products appeared as approximately 25-nm-thick fibers arranged longitudinally in arrays within the nucleus. With further cell maturation, fibers in the anterior portion of the nucleus appeared to fuse, forming homogeneously dense product. These fibrous products likely represent AO interactions with DNA in chromatin in which transition proteins had replaced histones. Changing patterns of these precipitated fibers likely reflect progressive stages of chromatin condensation, which starts at the center and anterior portion of the nucleus where the fibers coalesce. Mature sperm cell DNA, known to be complexed with protamines, was more resistant to AO-induced precipitation. The data suggest that precipitation induced by AO and monitored by electron microscopy may be a useful probe of nuclear chromatin structure.  相似文献   

11.
Although studies have demonstrated that zinc can bind to sperm nuclear proteins, specifically protamine 2, it has not been shown that the metal is sufficiently abundant inside the sperm nucleus to interact stoichiometrically with these proteins. In this study proton-induced X-ray emission (PIXE) has been used to measure the amount of sulfur and zinc within the nuclei of individual sperm cells to infer the stoichiometry of zinc binding to protamine 2 in six species of mammal: bull, chinchilla, stallion, hamster, human, and mouse (protamine 2 comprises from 0% (bull) to 67% (mouse) of the protamine present in the sperm of these animals). Using the sulfur mass and electrophoretic data on the relative proportion of protamine 1 and protamine 2 in the sperm chromatin of these species, the protamine 1, protamine 2, and total protamine contents within each species sperm nuclei have been determined. The PIXE measurements reveal that the zinc content of the sperm nucleus varies proportionately with the protamine 2 content of sperm chromatin. PIXE analyses of hamster protamines extracted under conditions that appear to at least partially preserve zinc binding also confirm that the majority of the metal is bound to protamine. In five of the species examined, sufficient zinc is present for each protamine 2 molecule to bind one zinc. The results obtained for chinchilla sperm, conversely, indicate the chinchilla protamine 2 molecule may interact differently with zinc. Chinchilla sperm only contain enough zinc for one atom to be bound to two protamine 2 molecules.  相似文献   

12.
To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species.  相似文献   

13.
14.
Mouse centromeric heterochromatin: Isolation and some characteristics   总被引:2,自引:0,他引:2  
A method is suggested for isolation of highly purified mouse centromeric heterochromatin. Treatment of mouse liver nuclei with decreasing concentrations of Ca2+ resulted in the gradual unraveling of chromatin in the nucleus and at 0.1 mM Ca2+ electron microscopy revealed several dense particles per nucleus, surrounded by decondensed chromatin. These particles, assumed to represent centromere regions of interphase chromosomes by in situ hybridization with radioactive mouse satellite DNA and by differential staining for centromere heterochromatin, were isolated in preparative amounts and their DNA and protein composition was analyzed. The preparation represented practically pure mouse centromere heterochromatin, since more than 90% of its DNA was satellite DNA.  相似文献   

15.
Dispersion of nuclear fibers of the spermatozoa of dogfish, man, and bull is made possible after treatment with a reducing and alkylating reagent coupled with an anionic detergent; the same detergent used at a low ionic strength dissociates the nuclear content of the rainbow trout sperm. Electron microscopy of such dispersed nuclear fibers has shown a beads-on-a-string configuration for these four types of sperm chromatin. These structures are morphologically similar to those described in somatic cell nuclei as nucleosomes, although in sperm chromatin the basic proteins associated with DNA were significantly different from histones.  相似文献   

16.
Treatment of bull spermatozoa with DDC--Na/dithiothreitol results in the swelling and decondensation of nuclear chromatin. The structures formed at the final stages of decondensation are morphologically similar to the male pronucleus. Cytophotometric analysis has shown that decondensation of chromatin in the gametes in followed by quantitative changes of basic nuclear proteins. In partly--decondensed sperm nuclei the intensity of histone staining increases as a result of the appearance of extra reactive groups. In fully decondensed nuclei there remain only 54% of histones of the original haploid level. Nucleoproteins revealed in the sperm with fully dispersed chromatin must be histones of the somatic type.  相似文献   

17.
The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ hybridization. In fully condensed, mature sperm nuclei, the telomere sequences appeared as discrete spots of various sizes interspersed throughout the volume of the nuclei. While the pattern of these signals was non-random, it varied significantly in different nuclei. These discrete telomere foci were seen to gradually lengthen into linear, beaded signals as sperm nuclei were decondensed, in vitro, and were not associated with the nuclear annulus. We also examined the relationship of telomeres to the sperm nuclear matrix, a residual nuclear structure that retains the original size and shape of the nucleus. In these structures the DNA extends beyond the perimeter of the nucleus to form a halo around it, representing the arrangement of the chromosomal DNA into loop domains attached at their bases to the nuclear matrix. Telomere signals in these structures were also linear and equal in length to those of the decondensed nuclei, and each signal represented part of a single DNA loop domain. The telomeres were attached at one end to the nuclear matrix and extended into the halo. Sperm nuclear matrices treated with Eco RI retained the telomere signals. These data support sperm DNA packaging models in which DNA is coiled into discrete foci, rather than spread out linearly along the length of the sperm nucleus.  相似文献   

18.
The morphogenesis of sperm nuclei was investigated in six different species or subspecies of the genus Xenopus (Pipidae, Anura). The sequence of nuclear morphogenesis was similar in each species used in this study. Electrophoretic comparison of the basic chromatin proteins from late spermatids and sperm of each species demonstrated that the complements of histones and spermatid-sperm-specific basic proteins were extremely diverse suggesting that shape was not determined by specific basic proteins or mechanisms of histone removal. This conclusion was reinforced by the observation that Xenopus sperm DNA decondensed by 2.0 M NaCl remained contrained in residual structures which resembled intact sperm nuclei. These observations suggested that morphogenesis of sperm nuclei is directed by proteins or RNA molecules which are not directly responsible for chromatin condensation.  相似文献   

19.
The cell-free extracts from animal Xenopus laevis egg could induce chromatin decon-densation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. The demembranated Orychophragmus violaceus sperm began to swell in 30 min incubation, and then were gradually decondensed. The reassembly of nuclear envelope in the reconstituted nuclei had been visualized by means of electron microscopy and fluorescent microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nucleus, with a double membrane, was similar to those nuclei after fertilization. Transmission electron microscope micrograph of the whole mount prepared nuclear matrix-lamina showed the reconstituted nucleus to be filled with a dense network.  相似文献   

20.
Chromatin and microtubule organisation was determined in maturing and activated porcine oocytes following intracytoplasmic sperm injection in order to obtain insights into the nature of sperm chromatin decondensation and microtubule nucleation activity. Sperm chromatin was slightly decondensed at 8 h following injection into germinal vesicle stage oocytes. Sperm-derived microtubules were not seen in these oocytes. Following injection into metaphase I (MI)-stage oocytes, sperm chromatin went to metaphase in most cases. A meiotic-like spindle was seen in the sperm metaphase chromatin. In a few MI-stage oocytes, sperm chromatin decondensed at 8 h after injection, and a small sperm aster was seen. Sperm injection into oocytes at 5 h following activation failed to yield pronuclear formation. Maternally derived microtubules were organised near the female chromatin in these oocytes, and seemed to move condensed male chromatin closer to the female pronucleus. At 18 h after sperm injection into pre-activated oocytes, a condensed sperm nucleus was located in close proximity to the female pronucleus. These results suggest that the sperm nuclear decondensing activity and microtubule nucleation abilities of the male centrosome are cell cycle dependent. In the absence of a functional male centrosome, microtubules of female origin take over the role of microtubule nucleation for nuclear movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号