首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

2.
《The Journal of cell biology》1988,107(6):2009-2019
We have microinjected aphidicolin, a specific inhibitor of DNA polymerase alpha, into syncytial Drosophila embryos. This treatment inhibits DNA synthesis and, as a consequence, nuclear replication. We demonstrate that under these conditions several cycles of both centrosome replication and cortical budding continue, although the cycles have a longer periodicity than is normally found. As in uninjected embryos, when the cortical buds are present, the embryos have nuclei containing decondensed chromatin surrounded by nuclear membranes as judged by bright annular staining with an anti-lamin antibody. As the buds recede, the unreplicated chromatin condenses and lamin staining becomes weak and diffuse. Thus, both cytoplasmic and nuclear aspects of the mitotic cycle continue following the inhibition of DNA replication in the Drosophila embryo.  相似文献   

3.
4.
When artificially activated mouse eggs are inseminated in the middle of the first cell cycle, sperm nuclei remain condensed until the first mitosis. During mitosis of the first cleavage division sperm nuclei decondense, subsequently recondense and are passively displaced to the daughter blastomeres. In the 2-cell embryos sperm nuclei form interphase nuclei which are able to replicate DNA and to condense into discrete chromosomes during the following mitotic division. These observations suggest that the mitotic cytoplasm of 1-cell embryos creates similar conditions for the transformation of sperm nuclei into male pronuclei as the cytoplasm of metaphase II oocytes.  相似文献   

5.
6.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

7.
Isolated blastomeres from 8- to 16-cell-stage embryos were fused by standard micromanipulatory means with either unfertilized eggs or fertilized or haploid parthenogenetically activated pronuclear-stage embryos. The hybrid eggs/embryos were incubated overnight in the presence of Colcemid until they had entered the first cleavage division. Air-dried chromosome preparations were then stained with silver nitrate in order to detect active nucleolar organizing regions (NOR). While control unfertilized eggs and 1-cell-stage fertilized and parthenogenetically activated embryos showed no evidence of silver-staining NOR-positive regions, the metaphase plates from 8- to 16-cell embryos showed characteristic NOR-positive regions, while their interphase nuclei also showed a characteristic reticular staining appearance. When hybrids between blastomere nuclei and unfertilized eggs were examined, none of the blastomere nuclei entered mitosis. However, when hybrids between blastomere nuclei and fertilized embryos were examined, in two thirds of the embryos, a single blastomere-derived diploid metaphase plate was present in association with two pronuclear-derived haploid metaphase plates. In most instances, the blastomere-derived chromosomes did not display silver-nitrate-staining NOR. Similar findings were observed when the blastomere-derived chromosomes in hybrids between blastomere nuclei and haploid parthenogenetic embryos were analysed. In the majority of cases, when blastomere nuclei remained in interphase, the characteristic silver-nitrate-staining fine reticular material either was not seen, or the nuclear contents were dispersed into clumps of chromatin-like material. Occasionally, the diploid chromosomes in the hybrids displayed morphological abnormalities. Our findings suggest that the cytoplasm of activated (but not nonactivated) 1-cell embryos is capable of influencing the nucleolar activity of the introduced 8- to 16-cell nuclei, effectively erasing from their chromosomes the memory of at least three previous rounds of rRNA synthesis.  相似文献   

8.
A protein factor named S-II that stimulates RNA polymerase II was previously purified from Ehrlich ascites tumor cells [1]. In this work using an antibody prepared against purified S-II, the localization of S-II in the cell was investigated by an indirect immunofluorescence technique. In 3T3 cells, specific immunofluorescence was detected only in the nucleoplasm where RNA polymerase II is located, and not in the nucleoli where RNA polymerase I is present. In Ehrlich ascites tumor cells fluorescence was detected mainly in the nucleoplasm, although some fluorescence was also detectable in the cytoplasm, possibly due to leak of S-II from the nuclei during preparation of the immunofluorescent samples. In metaphase cells fluorescent was not found on chromosomes but throughout the cytoplasm. These findings suggest that S-II is a nuclear protein and that it spreads into the cytoplasm without being attached to chromosomes in metaphase, but is reassembled into the nucleoplasm in the interphase. Specific immunofluorescence was also detected in the nuclei of HeLa cells and salivary glands cells of flesh-fly larvae, suggesting that the nucleoplasm of these heterologous cells contains proteins immunologically cross-reactive with the antibody against S-II.  相似文献   

9.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

10.
Chromosomes in degenerative and functional nuclei ofCarex ciliato-marginata Nakai were investigated during meiotic and primary pollen nuclear division. The nuclear DNA content of these nuclei was also measured using Feulgen microspectrophotometry. At metaphase of the primary pollen nuclear division, the chromosomes of degenerative nuclei were the same length as those of the functional nucleus, but only half their width. The functional nucleus divided into two, each of which moved to a pole, but the degenerative nuclei did not divide. The nuclear DNA content of the degenerative nucleus was half that of the functional nucleus and equal to that of one of the tetrads of a meiotic division. It is concluded that DNA replication was carried out in only one nucleus of the tetrad and that the other three nuclei were composed of unreplicated chromosomes at metaphase of the primary pollen nuclear division.  相似文献   

11.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

12.
The gene polo encodes a highly conserved serine/threonine protein kinase that has been implicated in several functions during cell division. Polo-like kinases are important positive regulators of cell cycle progression and have also been implicated in the exit from mitosis through the activation of the anaphase-promoting complex. Several data indicate that Plks are required for centrosome function, bipolar spindle organisation and cytokinesis. The intracellular localisation of Plks reflects their multiple roles in cell division, however, in vivo studies that describe the distribution of this protein during different stages of mitosis have never been performed. In the present work, we report the in vivo distribution of a GFP-POLO fusion protein expressed in stable transformants and analysed during the early embryonic development of Drosophila melanogaster. The GFP-POLO protein can be detected in unfertilised oocytes associated with the centromeric region of chromosomes of the polar body and followed until the formation of mitotic domains in later development. Detailed analysis of the dynamic localisation of GFP-POLO during syncytial mitotic cycles shows the timing of localisation to the centrosomes, centromeres and midbody. The results also indicate that GFP-POLO is present in astral microtubules early in mitosis, accumulates around the nuclear envelope until nuclear envelop breakdown and at metaphase associates to spindle microtubules. These in vivo studies show a highly dynamic association of POLO with multiple compartments of the mitotic apparatus. Furthermore, the wide distribution of the GFP-POLO protein to all compartments of the mitotic apparatus provides a valuable tool for future studies on cell cycle during development.  相似文献   

13.
The fine structure of stages in mitosis in a colorless euglenoid, Anisonema sp., reveals that chromosomes remain condensed throughout the life cycle and are attached to the nuclear envelope at interphase. The onset of mitosis is marked by the anterior migration of the nucleus towards the base of the reservoir and by elongation of the nucleolus. The nuclear envelope persists throughout mitosis. Microtubules are generated in the peripheral nucleoplasm adjacent to the envelope and attach to the chromosomes while they are still associated with the envelope. The region of microtubular contact develops into a distinct layered kinetochore as the developing spindle with attached chromosomes separates from the nuclear envelope and moves into the nucleoplasm. The mature spindle consists of a number of subspindles each containing about 8–10 microtubules and a few associated chromosomes. Both chromosomal and non-chromosomal microtubules are present in each subspindle and extend towards the envelope terminating at or near the nuclear pores. Chromosomal segregation is concomitant with nuclear elongation. By late division, an interzonal spindle develops in the dumbbell-shaped nucleus and nucleolar separation occurs. Continued invagination of the nuclear envelope in the region of the interzonal spindle eventually separates the daughter nuclei. A remnant of the interzonal spindle persists in the cytoplasm until cytokinesis.  相似文献   

14.
The proteasome is a multicatalytic proteinase complex composed of nonidentical subunits. By immunocytochemical analysis using monoclonal antibody raised against the egg proteasome, we demonstrate that the proteasome undergoes changes in its subcellular distribution, depending on the cell division cycle during embryonic development of the ascidian Halocynthia roretzi. During interphase, the proteasome is localized in the nucleus, i.e., in the nucleoplasm and along the nuclear membrane. The proteasome disappears from the nucleoplasm in prophase and from the nuclear envelope in prometaphase. During early metaphase, the proteasome is detectable in the chromosomes and, at late stages of metaphase, the immunoreactivity also occurs in the peripheral region of each spindle pole and at the mitotic spindle. In anaphase, however, the staining disappears in the mitotic apparatus. In telophase, the proteasome is again localized in the newly formed nucleus. In addition to the localization in the nucleus and around the mitotic apparatus, the proteasome shows cytoplasmic localization throughout the cell division cycle. Such a change of subcellular distribution of the proteasome is clearly demonstrated in the synchronously dividing blastomeres and also is believed to occur in the postcleavage embryos. These observations suggest that the proteasome may play a key role in the progression of cell division cycle.  相似文献   

15.
In the syncytial blastoderm stage of Drosophila embryogenesis, dome-shaped actin "caps" are observed above the interphase nuclei. During mitosis, this actin rearranges to participate in the formation of pseudocleavage furrows, transient membranous invaginations between dividing nuclei. Embryos laid by homozygous sponge mothers lack these characteristic actin structures, but retain other actin associated structures and processes. Our results indicate that the sponge product is specifically required for the formation of actin caps and metaphase furrows. The specificity of the sponge phenotype permits dissection of both the process of actin cap formation and the functions of actin caps and metaphase furrows. Our data demonstrate that the distribution of actin binding protein 13D2 is unaffected in sponge embryos and suggest that 13D2 is upstream of actin in cortical cap assembly. Although actin caps and metaphase furrows have been implicated in maintaining the fidelity of nuclear division and the positions of nuclei within the cortex, our observations indicate that these structures are dispensible during the early syncytial blastoderm cell cycles. A later requirement for actin metaphase furrows in preventing the nucleation of mitotic spindles between inappropriate centrosomes is observed. Furthermore, the formation of actin caps and metaphase furrows is not a prerequisite for the formation of the hexagonal array of actin instrumental in the conversion of the syncytial embryo into a cellular blastoderm.  相似文献   

16.
A monoclonal antibody (3C5) isolated from a mouse immunized with human chromatin stained the nuclei of all cultured cell types tested by indirect immunofluorescence. Experiments with HeLa and PtK1 cells demonstrated striking cell-cycle-related changes in the staining properties of the target antigen. A rapid increase in nuclear fluorescence was seen in prophase, with antigen located between the condensing chromosomes. In metaphase and anaphase cells antigen was present throughout the cytoplasm with the chromosomes apparently unstained. However, isolated metaphase chromosomes showed intense, peripheral staining. In telophase cells immunofluorescent staining was most intense among the decondensing chromosomes and by early G1 staining was predominantly nuclear. Nuclear fluorescence faded as cells progressed through interphase. By protein blotting and immunostaining, 3C5 recognized protein bands with subunit molecular weights of 130, 73, 50, 38, 32 and 22 to 25 kDa. These bands were present in all human and rodent cultured cell types tested. All bands were extracted by 6 M urea or 1% sodium dodecyl sulfate (SDS) but not by Triton X-100. Our results provide evidence against the involvement of a common carbohydrate moiety, in vitro proteolysis or non-specific cross reaction in this multi-banded pattern. The same family of proteins was detected in mitotic and interphase cells, suggesting that the changes in immunofluorescent staining through mitosis are due to changes in antigen accessibility. Subcellular fractionation experiments showed that all major bands were present in the nuclear fraction. Only two (50 and 32 kDa) were detected also in the post-nuclear membrane fraction and none were present in the soluble cytoplasmic fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
R Winqvist  K Saksela    K Alitalo 《The EMBO journal》1984,3(12):2947-2950
The protein products of cellular and viral myc oncogenes are detected in nuclei by immunofluorescence. No myc fluorescence is found in nucleoli. In mitotic cells the myc antigens are not found associated with metaphase chromosomes, but are diffusely distributed throughout the cytoplasm. Cytoplasmic myc fluorescence is first observed when chromatin begins to condense in early prophase. Granular nuclear myc fluorescence is again discerned in telophase cells, when the nuclear envelope is formed and becomes more prominent upon cytokinesis; concomitantly the diffuse cytoplasmic myc staining is lost. These results suggest that myc proteins not only bind to DNA or chromatin, but are also associated with other structural systems in the nuclei.  相似文献   

18.
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.  相似文献   

19.
Human replication protein A (RPA) is a three-subunit protein complex involved in DNA replication, repair, and recombination. To gain insight into the dynamics of subunit assembly, we examined the subcellular distribution of RPA subunits (p70, p34, and p11) during the cell cycle. All three subunits colocalized in G1 and S phases, showing a diffuse nuclear distribution in G1 but a dot-like nuclear pattern in S phase. During S phase, the subunits showed a pattern reminiscent of the replication granules/factories described by others as sites of replication machinery. In metaphase, p70 preferentially associated with the spindle poles, p34 was found on chromosomes, and p11 remained in the cytoplasm. In telophase, p70 and p34 appeared in the forming daughter nuclei; p11 remained in the cytoplasm until G1. Among the three subunits only p34 was associated with the nuclear matrix and this association persisted throughout the cell cycle. We conclude that (i) RPA complex assembly is differentially regulated, (ii) the replication machinery may be anchored to the nuclear matrix, and (iii) RPA subunits partition during mitosis and sort into daughter nuclei by different routes.  相似文献   

20.
The patterns of differential staining based on the effects of BrdU-substitution in chromosomal DNA have been examined in both metaphase chromosomes and prematurely condensed chromosomes (PCC) of interphase Chinese hamster cells. Results indicate that differential staining may be obtained in chromosomes from all stages of the cell cycle and correspond to the semi-conservation mode of DNA replication. Such fidelity of differential staining in both interphase and metaphase chromosomes suggests that components essential for induction of differential staining are present throughout the cell cycle and chromosomes may contain similar structures and organization throughout the cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号