首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
An experimental model of mouse embryonic stem cell (ESC) differentiation into cells with contractile activity (similar to that of cardiomyocytes) without embryoid body formation has been obtained. The main factor inducing ESC differentiation along the cardiomyocyte pathway is recombinant cytokine LIF added in the course of long-term culturing. The contractile cells respond positively to treatment with isoproterenol, a cardioactive drug, which is evidence for the presence in these cells of β-adrenoreceptors characteristic of terminally differentiated mammalian cardiomyocytes.  相似文献   

2.
Embryoid bodies were prepared from mouse embryonic stem cells expressing exogenous EGAM1C to analyze their ability to differentiate toward terminally differentiated cell types. The generation of cardiomyocytes was severely suppressed in Egam1c transfectants without upregulation of Nkx2-5, a crucial gene for cardiomyogenesis. These results indicate that EGAM1C is capable of affecting terminal differentiation in mouse embryonic stem cells.  相似文献   

3.
The recent discovery of several myogenic cardiac progenitor cells in the post-natal heart suggests that some myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission electron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 +/- 6%), moderately differentiated cells (43 +/- 2%) and mature cardiomyocytes (14 +/- 4%). Undifferentiated cells contained a large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well-developed sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low levels in the E16.5 ( approximately 20%) and E18.5 ( approximately 7%) myocardium. Further we used immunogold labeling technique to test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A preponderance of anti-Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types. Anti-ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature myocardial cells. All of the undifferentiated cells were negative for anti-ANF labeling. We did not find immuno-gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in post-chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF represent differentiating myocytes.  相似文献   

4.
5.
定向诱导小鼠ES细胞向心肌细胞的分化   总被引:4,自引:0,他引:4  
为了提高体外诱导ES细胞向心肌细胞分化的效率 ,对以往的诱导方法加以改进 ,采用直接悬浮培养和 0 8%DMSO诱导 ,建立了简便、高效的定向诱导ES细胞向心肌细胞分化的体系 .诱导第 9d起可见自发性、有节律跳动的类胚体出现 ,第 14d达到高峰 ,约有 70 %的拟胚体产生跳动 .用RT PCR的方法在跳动的拟胚体中检测到心肌细胞特异性标志物的表达 ,采用免疫荧光染色的方法在蛋白水平检测到心肌特异的α辅肌动蛋白 (α actinin)的表达 ,并可见清晰肌小节 ,表明在改进的体外诱导条件下ES细胞可分化为成熟的心肌细胞 .  相似文献   

6.
Spontaneous formation of embryoid bodies and subsequent differentiation of some cells into cardiomyocytes were demonstrated on murine embryonic stem cells of R1 line. The lines of embryonic stem cells were obtained that had been transfected with genetic constructs carrying expressing regulatory genes of the human immunodeficiency virus tat and nef and "green protein" gene (GFP). The transfection of embryonic stem cells with the gene tat stimulated their proliferative activity, while this activity decreased in the cells transfected with the gene nef. The time necessary for the formation of embryoid bodies by all lines of transfected cells was similar to that in the control cells. In the cultures of cells transfected with nef and tat, the number of embryoid bodies and the percentage of embryoid bodies with contracting cardiomyocytes were higher and lower than in the control, respectively. Thus, an inverse correlation was observed between the effects of regulatory genes of the human immunodeficiency virus on proliferation and differentiation embryonic stem cells.  相似文献   

7.
This study reports the use of gold nanoparticle-based surface-enhanced Raman scattering (SERS) for probing the differentiation of mouse embryonic stem (mES) cells, including undifferentiated single cells, embryoid bodies (EBs), and terminally differentiated cardiomyocytes. Gold nanoparticles (GNPs) were successfully delivered into all 3 mES cell differentiation stages without affecting cell viability or proliferation. Transmission electron microscopy (TEM) confirmed the localization of GNPs inside the following cell organelles: mitochondria, secondary lysosome, and endoplasmic reticulum. Using bright- and dark-field imaging, the bright scattering of GNPs and nanoaggregates in all 3 ES cell differentiation stages could be visualized. EB (an early differentiation stage) and terminally differentiated cardiomyocytes both showed SERS peaks specific to metabolic activity in the mitochondria and to protein translation (amide I, amide II, and amide III peaks). These peaks have been rarely identified in undifferentiated single ES cells. Spatiotemporal changes observed in the SERS spectra from terminally differentiated cardiomyocyte tissues revealed local and dynamic molecular interactions as well as transformations during ES cell differentiation.  相似文献   

8.
Complement-dependent control of teratoma formation by embryonic stem cells   总被引:4,自引:0,他引:4  
The fetus has pluripotent stem cells that when transferred to mature individuals can generate tumors. However, for reasons yet unknown, tumors form rarely in the fetus and/or the mother during normal gestation. We questioned whether the complement system might protect against tumor formation by pluripotent stem cells. Murine embryonic stem cells were notably more susceptible than cardiomyocytes differentiated from those cells to lysis by complement in heterologous and homologous sera. Treatment of embryonic stem cells with heterologous serum averted tumor formation after residual cells were transplanted into mice. Confirming the importance of homologous complement in preventing formation of tumors, untreated embryonic stem cells formed tumors more quickly in C3-deficient than in wild-type mice. Susceptibility of embryonic stem cells to complement required an intact alternative pathway and was owed at least in part to a relative deficiency of sialic acid on cell surfaces compared with differentiated cells. Susceptibility to complement and resistance to tumors was inversely related to the number of cells transferred. These findings show that formation of tumors from embryonic stem cells is controlled in part by the alternative pathway of complement and suggest that susceptibility to complement might represent a general property of pluripotent stem cells that can be exploited to prevent tumor formation.  相似文献   

9.
胚胎干细胞定向分化为心肌细胞研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞在体外可分化为 3个胚层的所有组织细胞。诱导人类胚胎干细胞定向分化为心肌细胞可为心肌梗死、心肌坏死等重大心脏疾病患者实施细胞治疗 ,也可作为种子细胞 ,用于构建供器官移植用的人造心脏 ;进一步可研究心肌细胞发育分化的分子机理及更直观的用于体外筛选人类心血管药物等。对人类胚胎干细胞及其定向分化为心肌细胞分子机理的研究进展及其所面临的问题作一综述。  相似文献   

10.
Embryoid bodies were prepared from mouse embryonic stem cells expressing exogenous EGAM1C to analyze their ability to differentiate toward terminally differentiated cell types. The generation of cardiomyocytes was severely suppressed in Egam1c transfectants without upregulation of Nkx2-5, a crucial gene for cardiomyogenesis. These results indicate that EGAM1C is capable of affecting terminal differentiation in mouse embryonic stem cells.  相似文献   

11.
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.  相似文献   

12.
Heart growth in the embryo is achieved by division of differentiated cardiomyocytes. Around birth, cardiomyocytes stop dividing and heart growth occurs only by volume increase of the individual cells. Cardiomyocytes seem to lose their capacity for cytokinesis at this developmental stage. Septins are GTP-binding proteins that have been shown to be involved in cytokinesis from yeast to vertebrates. We wanted to determine whether septin expression patterns can be correlated to the cessation of cytokinesis during heart development. We found significant levels of expression only for SEPT2, SEPT6, SEPT7 and SEPT9 in heart, in a developmentally regulated fashion, with high levels in the embryonic heart, downregulation around birth and no detectable expression in the adult. In dividing embryonic cardiomyocytes, all septins localize to the cleavage furrow. We used drugs to probe for the functional interactions of SEPT2 in dividing embryonic cardiomyocytes. Differences in the effects on subcellular septin localization in cardiomyocytes were observed, depending whether a Rho kinase (ROCK) inhibitor was used or whether actin and myosin were targeted directly. Our data show a tight correlation of high levels of septin expression and the ability to undergo cytokinesis in cardiomyocytes. In addition, we were able to dissect the different contributions of ROCK signaling and the actomyosin cytoskeleton to septin localization to the contractile ring using cardiomyocytes as an experimental system.  相似文献   

13.
Abstract. A defined cultivation system was developed for the differentiation of pluripotent embryonic stem cells of the mouse into spontaneously beating cardiomyocytes, allowing investigations of chronotropic responses, as well as electrophysiological studies of different cardioactive drugs in vitro.
The β-adrenoceptor agonists (—)isoprenaline and clenbuterol, the mediators of cAMP metabolism, forsko-lin and isobutylmethylxanthine (IBMX), the α1-adreno-ceptor agonist (—)phenylephrine, and the heart glyco-side digitoxine induced a positive, the muscarinic cholin-oceptor agonist carbachol and L-type Ca2+ channel blockers nisoldipine, gallopamil and diltiazem induced a negative chronotropic response.
In early differentiated cardiomyocytes β1-, α1-, but not β2-adrenoceptors, cholinoceptors, as well as L-type Ca2+ channels participated in the chronotropic response. In terminally differentiated cardiomyocytes β2-adrenoceptors and digitoxine responses were also functionally expressed.
The contractions of spontaneously beating cardiomyocytes were concommitant with rhythmic action potentials very similar to those described for embryonic cardiomyocytes and sinusnode cells. We conclude that cardiomyocytes differentiating from pluripotent embryonic stem cells are able to develop adrenoceptors and cholinoceptors and signal transduction pathways as well as L-type Ca2+ channels as a consequence of cell-cell interactions during embryoid body formation in vitro, independent of the development in living organisms.
The cellular system described may be useful as in vitro assay for toxicological investigations of chronotropic drugs and a model system for studying commitment and cellular differentiation in vitro.  相似文献   

14.
We have successfully developed both spontaneous and inductive cardiomyocyte differentiation of iPS cells reprogrammed from human foreskin fibroblasts. The reprogrammed iPS cells morphologically resemble human cardiomyocytes which can beat. RT-PCR and immunostaining show that cardiac markers are expressed that are comparable to the differentiation pattern of authentic human embryonic stem cells, indicating the existence of both immature and mature differentiated cardiomyocytes. 5-Azacytidine greatly enhanced the efficiency of cardiomyocyte differentiation, whereas dimethylsulfoxide had no effect. Low serum and bone morphogenetic protein-2 marginally improved differentiation efficiency. iPS cell-derived cardiomyocytes changed their beat frequency in response to cardiac drugs, which included ion channel blockers and α/β adrenergic stimulators. Derived cardiomyocytes look promising as an in vitro system for potential drug screen and/or toxicity, making this system closer to practical use in the near future.  相似文献   

15.
16.
Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy.  相似文献   

17.
18.
Spontaneous formation of embryoid bodies and subsequent differentiation of some cells into cardiomyocytes were demonstrated on murine embryonic stem cells of R1 line. The lines of embryonic stem cells were obtained that had been transfected with genetic constructs carrying expressing regulatory genes of the human immunodeficiency virus tat and nef and green protein gene (GFP). The transfection of embryonic stem cells with the gene tat stimulated their proliferative activity, while this activity decreased in the cells transfected with the gene nef. The time necessary for the formation of embryoid bodies by all lines of transfected cells was similar to that in the control cells. In the cultures of cells transfected with nef and tat, the number of embryoid bodies and the percentage of embryoid bodies with contracting cardiomyocytes were higher and lower than in the control, respectively. Thus, an inverse correlation was observed between the effects of regulatory genes of the human immunodeficiency virus on proliferation and differentiation embryonic stem cells.  相似文献   

19.
Luo HY  Tang M  Hu XW  Song MK  Liang HM  Du YM  Zhang Y 《生理学报》2004,56(5):651-655
本文旨在探索小鼠胚胎心肌细胞的分离方法并观察其电生理特性。应用胶原酶B消化法获得不同时期单个小鼠胚胎心肌细胞;利用全细胞膜片钳技术,记录胚胎心肌细胞的超极化激活的非选择性内向阳离子电流(If)和L-钙电流(ICa-L),并用电流钳记录其自发性动作电位。胚胎心肌细胞通过相差显微镜依据其形态和自发性收缩进行鉴定。本法分离所获得的胚胎心肌细胞容易进行全细胞膜片钳记录,可用于记录If,ICa-L.电流和自发性动作电位,己证实胚胎心肌细胞If和Ica-L的电生理特性与成年起搏细胞或心肌细胞相似。本实验建立的分离方法简单、稳定、有效、可靠,最早可获得8.5d的胚胎心肌细胞。胚胎心肌细胞的电生理记录为探索胚胎心肌细胞的电生理特性提供了一个可用的模型,并可能为某些心脏疾病产生的机制提供实验依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号