首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Exposure of the plasmid pBR 322 to the aerobic xanthine oxidase reaction introduced single strand scissions and endonuclease III-sensitive sites. The latter may be residues of thymine glycol. Both forms of DNA damage were completely prevented by superoxide dismutase or catalase, whereas bovine serum albumin was much less effective. Mannitol and benzoate, added as scavengers of HO., and desferrioxamine or diethylene triamine pentaacetate, added to sequester Fe(III), also protected. These results indicate a metal-catalyzed interaction of O2- with H2O2, which produces HO. which, in turn, causes DNA strand scission and oxidation of thymine residues to thymine glycol. Plasmid isolated from aerobically-incubated cells contained more strand scissions and endonuclease III-sensitive sites than did plasmid from anaerobically-incubated cells, and a low molecular weight scavenger of O2- prevented the damage seen with the aerobic cells. Genetic defects in AP endonucleases rendered E. coli more susceptible to the dioxygen-dependent lethality of plumbagin, which mediates O2- production. Similarly, plasmid DNA, within the endonuclease-deficient cells, exhibited more strand scissions and endonuclease III-sensitive sites upon aerobic exposure to plumbagin than did endonuclease-sufficient cells, and a low molecular weight scavenger of O2- was protective. These results are consistent with the conclusions that strand scissions and formation of endonuclease III-sensitive sites are among the consequences of exposure of DNA to O2- plus H2O2, both in vitro and in vivo.  相似文献   

2.
The iron porphyrin derivatives, iron (III) meso-tetra(4-N-methylpyridyl)-porphine (Fe(III)T4MPyP), aceto-iron (III) meso-tetra(3-N-methylpyridyl)porporphine (AcO-Fe(III)T3MPyP), and iron (III) meso-tetra(p-sulfonatophenyl)-porphine (Fe(III)TSPP), have been shown to induce strand scissions in DNA. Incubation of these porphyrins with PM2 DNA results in the conversion of circular supercoiled DNA to the nicked circular duplex form. The presence of dithiothreitol increases the extent of the nicking reaction. Fe(III)TSPP, which, unlike Fe(III)T4MPyP and AcO-Fe(III)T3MPyP, does not bind to DNA, is the least effective of the three porphyrins in inducing strand scissions in PM2. Both Fe(III)T4MPyP and AcO-Fe(III)T3MPyP induce strand scissions in cellular DNA of pre-labeled HeLa S3 cells while Fe(III)TSPP has a very limited effect.  相似文献   

3.
A sensitive new approach for measuring the repair of single strand breaks in DNA induced by low doses of gamma irradiation was tested in cultured fibroblasts from Chinese hamster lung, human afflicted with ataxia telangiectasia or Fanconi's anemia and in normal cells of early and late passages. The assay is based on the increasing rate of strand separation of DNA duplexes in alkali for molecules with increasing numbers of single strand scissions. DNA strand separation is shown to follow the relation, in F = -(1/Mn - const) - tbeta where F is the proportion of double-stranded DNA, detected as S1 nuclease resistant, after alkaline denaturation time, t. Mn is the number-average molecular weight of DNA between single strand breaks. beta less than 1 is an empirically determined constant. The results suggest an increase in the number-average molecular weight between breaks, Mn, with increasing times for repair. The final level attained corresponds to the Mn of control DNA in unirradiated cells. As few as one break introduced into 109 daltons of single-stranded control cell DNA can be detected. The kinetics, requirements and sensitivities of this assay are described.  相似文献   

4.
Macromomycin, a protein antitumor drug, was found to cause strand scissions in vitro in superhelical PM2 and SV40 DNA as well as linear duplex lambda DNA. DNA damage appeared to be single rather than double-strand scissions, and there is an indication that DNA breaks occur at some preferential base sites. The DNA breaks were predominantly true single-strand scissions as opposed to alkali-labile bonds. The cutting reaction was inhibited by low temperature (0 degrees C) and reached a maximum at 45 degrees C. The reaction was not affected by 2-mercaptoethanol, although EDTA did cause a slight decrease in the reaction rate. MgCl2 was found to be an effective inhibitor of the strand scission activity of the drug. The rate of DNA cutting was linear over a wide range of DNA substrate levels. There appeared to be a correlation between the drug's ability to damage DNA and to inhibit cell growth in that similar losses of these two activities occurred as the drug was thermally denatured.  相似文献   

5.
An endonuclease that makes single polynucleotide chain scissions in ultraviolet-irradiated DNA has been purified from Escherichia coli. The activity has the following properties: (a) unirradiated DNA is attacked very little if at all; (b) single strand DNA is not attacked, whether irradiated or not; (c) there is no requirement for divalent cations and the activity is not affected by the addition of EDTA; (d) the pH optimum is approximately 7; (e) the activity is inhibited by 1 M NaCl, single strand DNA, transfer RNA and double strand DNA; (f) the sedimentation coefficient, S20,w, is approximately 2.6; (g) it is a basic protein. The enzyme is tentatively named E. coli endonuclease III. The physiological function of the endonuclease has not yet been established.  相似文献   

6.
The long-wavelength ultraviolet (lambda approximately 420 nm) radiation induced reaction between 6-azido-2-methoxy-9-acridinylamines and supercoiled plasmid DNA results in single strand scissions and formation of covalent adducts (ratio approximately 1:10). By treating azidoacridine-photomodified DNA with piperidine at 90 degrees C, additional strand scissions are observed in a complex sequence dependent manner with an overall preference for T greater than or equal to G greater than C much greater than A. The resulting DNA fragments migrate as 5'-phosphates in polyacrylamide gels. Photofootprinting of the binding site of RNA-polymerase on promoter DNA is demonstrated with an azido-9-acridinylamino-octamethylene-9-aminoacridine. Similar experiments using 9-amino-6-azido-2-methoxyacridine indicate that this reagent recognizes changes in the DNA conformation induced by RNA polymerase binding, in relation to open complex formation.  相似文献   

7.
Interaction of the MvaI restriction enzyme with synthetic DNA fragments   总被引:1,自引:0,他引:1  
The cleavage of synthetic DNA duplexes by the restriction endonuclease MvaI has been studied. The main result of the cleavage experiments is that MvaI cleaves unmodified duplexes in two single strand scissions in separate events and that the two strands are cleaved at significantly different rates. One strand nicks within the recognition site do not affect the cleavage. Furthermore, neither a pyrophosphate internucleotide bond modification in one strand nor the absence of one phosphate group at the central dA-residue of the recognition site do inhibit the cleavage of the second strand.  相似文献   

8.
Abstract

A novel intercalator, 4-nitro(N-hexylamine)1,8-naphthalimide, was synthesised and its DNA binding and photoinduced DNA cleavage properties were studied. The DNA unwinding results show that it binds through intercalation. Absorption and fluorescence spectroscopy reveal the preference for A/T base pairs as compared to G/C base pairs for the binding. The intercalator produces photoinduced single strand scissions in double helical DNA.  相似文献   

9.
The action of the dimer-specific endonuclease V of bacteriophage T4 was studied on UV-irradiated, covalently-closed circular DNa. Form I ColE1 DNA preparations containing average dimer frequencies ranging from 2.5 to 35 pyrimidine dimers per molecule were treated with T4 endonuclease V and analysed by agarose gel electrophoresis. At all dimer frequencies examined, the production of form III DNA was linear with time and the double-strand scissions were made randomly on the ColE1 DNA genome. Since the observed fraction of form III DNA increased with increasing dimer frequency but the initial rate of loss of form I decreased with increasing dimer frequency, it was postulated that multiple single-strand scissions could be produced in a subset of the DNA population while some DNA molecules contained no scissions. When DNA containing an average of 25 dimers per circle was incubated with limiting enzyme concentrations, scissions appeared at most if not all dimmer sites in some molecules before additional strand scissions were produced in other DNA molecules. The results support a processive model for the interaction of T4 endonuclease V with UV-irradiated DNA.  相似文献   

10.
Carbazolyloxyacetohydroxamic acid (1), 9,9'-decamethylene-bis-carbazolyloxyacetohydroxamic acid (2), benzohydroxamic acid (3), and acetohydroxamic acid (4) without reducing agent under aerobic conditions induced DNA strand scissions with increasing activities in the order of 4 > 3 > 2 > 1. The inhibition experiments indicated that hydrogen peroxide and superoxide participated in the reactions, but hydroxyl radical or singlet oxygen did not.  相似文献   

11.
Double-strand scissions produced by decay of (32)P incorporated into T4 deoxyribonucleic acid (DNA) were detected in cross-linked DNA and DNA containing (32)P in only one strand of the double helix.  相似文献   

12.
The antitumor protein antibiotic neocarzinostatin causes strand scission of DNA in vitro in the presence of a sulfhydryl compound. The breaks are single stranded in nature and bear 5'-phosphoryl termini. All four deoxymononucleotides are recoverable at the 5'-ends of the cleavage sites although a higher proportion of dGMP and TMP are consistently found. The lesions are not repairable with polynucleotide ligase from Escherichia coli. A quantitative assay was developed to determine the pH profile and time course of the reaction. Data from protection experiments with synthetic and natural DNAs indicate the requirement for thymidylic acid and deoxyadenylic acid in the DNA for cutting. In DNA-RNA hybrids, riboadenylic acid can substitute for deoxyadenylic acid, whereas ribouridylic acid cannot substitute for thymidylic acid. Release of thymine is detected, and the amount of release correlates well with the number of strand scissions.  相似文献   

13.
L S Kappen  I H Goldberg  T S Samy 《Biochemistry》1979,18(23):5123-5127
The protein antibiotics neocarzinostain (NCS), macromomycin (MCR), and auromomycin (AUR), which is closely related to MCR, have been compared for their in vitro and in vivo actions on deoxyribonucleic acid (DNA). NCS, markedly stimulated by 2-mercaptoethanol, is much more active in inducing strand scissions in superhelical pMB9 and linear duplex lambda DNA than AUR, which is slightly inhibited by 2-mercaptoethanol. Purified MCR, even at very high levels, does not give any significant amount of cutting with either DNA substrate. 2-Propanol stimulates the activity of NCS but inhibits that of AUR. On the other hand, the antioxidant alpha-tocopherol strongly inhibits DNA breakage by both drugs. The intercalating drugs ethidium bromide, daunorubicin, proflavin, and actinomycin D at low concentrations inhibit DNA scission by AUR. The levels of intercalators required to inhibit NCS activity to comparable levels are about 10 times higher than those for AUR. Although MCR has virtually no in vitro DNA cutting activity, it is, like AUR and NCS, cytotoxic, as measured by the inhibition of DNA synthesis and induction of DNA strand breakage in HeLa cells.  相似文献   

14.
We have examined whether DNA strand exchange activities from nuclear extracts of HeLa cells or Drosophila melanogaster embryos have detectable helicase or melting activities. The partially purified recombinases have been shown to recognize homologous single strand and double strand DNA molecules and form joint molecules in a DNA strand exchange reaction. The joint molecule product consists of a linear duplex joined at one end by a region of DNA heteroduplex to a homologous single strand circular DNA. Using two different partially duplex helicase substrates, we are unable to detect any melting of duplex regions under conditions that promote joint molecule formation. One substrate consists of a 32P-labeled oligonucleotide 20 or 30 bases long annealed to M13mp18 circular single strand DNA. The second substrate consists of a linear single strand region flanked at each end by short duplex regions. We observe that even in the presence of excess recombinase protein or after prolonged incubation no helicase activity is apparent. Control experiments rule out the possibility that a helicase is masked by reannealing of displaced single strand fragments. Based on these findings and other data, we conclude that the human and D. melanogaster recombinases recognize and pair homologous sequences without significant melting of duplex DNA prior to strand exchange.  相似文献   

15.
Cells permeable to deoxyribonucleoside triphosphate were prepared from Micrococcus radiodurans, and DNA synthesis and rejoining of strand scissions induced by gamma-rays were investigated. DNA synthesis was stimulated by ATP at an optimal concentration of 1mM. This reaction requires four deoxyribonucleoside triphosphates and MgCl2. NAD inhibited the reaction, but no rejoining of primer DNA was observed. Even in the presence of NAD, DNA which was synthesized in the unirradiated permeable cells had a peak molecular weight of only 1.3 - 10(6). DNA synthesis was stimulated by irradiation of the permeable cells with gamma-rays, but this stimulatory effect was eliminated by the addition of NAD. Both primer and synthesized DNA in the irradiated permeable cells were rejoined in vitro in the presence of NAD and deoxyribonucleoside triphosphates, while those in the unirradiated permeable cells were not rejoined.  相似文献   

16.
DNA cleavage specificity of a group of cationic metalloporphyrins   总被引:9,自引:0,他引:9  
The ability of a group of water-soluble metalloporphyrins to cleave DNA has been investigated. Incubation of Mn3+, Fe3+, or Co3+ complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2T4MPyP) with DNA in the presence of ascorbate, superoxide ion, or iodosobenzene results in DNA breakage. Comparisons between the rates of porphyrin autodestruction with the rates of strand scission of covalently closed circular PM2 DNA indicate that the porphyrins remain intact during the cleavage process. Analysis of the porphyrin-mediated strand scissions on a 139-base-pair restriction fragment of pBR322 DNA using gel electrophoresis/autoradiography/microdensitometry reveals that the minimum porphyrin cleavage site is (A X T)3. The cleavage pattern within a given site was found to be asymmetric, indicating that porphyrin binding and the strand scission process are highly directional in nature. In addition to an analysis of the mechanism of porphyrin-mediated strand breakage in terms of the DNA cleavage mechanism of methidium-propyl-iron-EDTA and Fe-bleomycin, the potential of the cationic metalloporphyrins as footprinting probes and as new "reporter ligands" for DNA is presented and discussed.  相似文献   

17.
The protein components required for generation of cohesive ends in vitro from circular bacteriophage P2 DNA have been purified to near homogeneity. In the presence of ATP, the purified products of P2 genes M and P together with empty phage capsids (comprised primarily of the N protein) mediate site-specific cleavage of circular P2 DNA at the cohesive end site (cos). This terminase or ter system also utilizes circular DNAs of bacteriophages P4 and 186, introducing site-specific scissions at cos sites within these molecules. The ter reaction exhibits a peculiar requirement for a circular DNA substrate. Substrate activity is greatly reduced when circular P2, P4, or 186 DNAs are linearized by restriction endonuclease hydrolysis. Furthermore, multimeric P4 DNA molecule sites are also essentially inactive in the linear form but are active in the circular state. The dependence of ter action on a circular substrate is not due to inhibition of the system by linear DNA, nor does it appear to reflect a requirement for substrate superhelicity since circular P4 DNA containing single strand scissions is subject to terminase action. The terminase reaction is supported by ATP, dATP, or beta, gamma-imido ATP, but not by other ribonucleoside triphosphates ADP, alpha, beta-methylene ATP, or beta, gamma-methylene ATP. A DNA-dependent ATPase, which hydrolyzes ATP to AMP, copurifies with the P2 P protein and is inactivated with the same kinetics as P activity upon treatment with N-ethylmaleimide. The ATPase does not display specificity for P2 DNA in vitro.  相似文献   

18.
After isolation, the DNA of simian virus 40 appeared as a negative supertwist (form I) or as an open circle with at least one single-strand scission (form II). Under the denaturation conditions usually applied, such as heating in the presence of formaldehyde or application of alkali, form I molecules could appear as "relaxed" circles without single-strand scissions (form I') containing denatured sites not visible under the electron microscope. Form II molecules, under these denaturation conditions, showed partial or complete strand separations allowing the construction of denaturation maps. By using a modified denaturation procedure, i.e., heating of isolated SV40 DNA in the presence of dimethyl sulfoxide and formaldehyde followed by keeping the DNA in this denaturation solution at room temperature for periods up to 3 weeks, partially denatured relaxed circles without single-strand scissions were produced (form I'D) in addition to completely denatured form II molecules. The absence of single-strand scissions in form I'D molecules was demonstrated by a second heat treatment, which did not change the configuration of this molecular form. Form I'D molecules, in contrast to form I', contained denatured sites clearly discerible under the electron microscope. This combined application of two subsequent denaturation steps (denaturation by heating followed by denaturation at room temperature and neutral pH) showed that the molecular configuration I'D originated in two steps. The heating procedure produced molecules not distinquishable by electron microscopy from form I. In contrast to form I, these molecules were assumed to possess "preformed" denaturation sites (form I). Further treatment of form I molecules with denaturation solution at room temperature finally transformed them into convalently closed, relaxed, partially denatured circles exhibiting strand separations easily measurable on electron micrographs (form I'D). Denaturation maps of form I'D molecules were constructed by computer and compared with denaturation maps derived from partially denatured form II molecules. From these denaturation maps it can be concluded that the melting of base pairs occurring during the transition of simian virus 40 DNA form I into form I'D also preferentially happened at sites rich in the bases adenosine and thymine.  相似文献   

19.
Exposure of light-grown and dark-grown Euglena cells to gamma radiation causes single strand breaks in nuclear DNA as assessed by sedimentation analysis in alkaline sucrose density gradients. The number of radiation-induced single strand breaks in nuclear DNA of light-grown cells is found to be less than that in dark-grown cells. Post-irradiation incubation of both types of cells in 0 . 1 M phosphate buffer, pH 7 . 0 at 25 degrees C for 1 hour results in restitution of the strand breaks in DNA. Light-grown cells (cells with chloroplasts) are able to rejoin all the single strand breaks in DNA produced by gamma irradiation at D50 and D5 doses. On the other hand, dark-grown cells (cells devoid of chloroplasts) are unable to rejoin all the strand breaks caused by irradiation at either of the doses. The rate of DNA repair in dark-grown cells is also much slower than that in light-grown cells. Radiation-induced single strand breaks in DNA and their repair in nuclei from both types of cells is found to be similar to that observed in the spheroplasts. It is suggested that some factor(s) elaborated by chloroplasts may contribute towards the efficiency of nuclear DNA repair in Euglena cells.  相似文献   

20.
HgCl2 is extremely cytotoxic to Chinese hamster ovary (CHO) cells in culture since a 1-h exposure to a 75- microM concentration of this compound reduced cell plating efficiency to 0 and cell growth was completely inhibited at 7.5 microM . The level of HgCl2 toxicity depended upon the culture incubation medium and has previously been shown to be inversely proportional to the extracellular concentration of metal chelating amino acids such as cysteine. Thus, HgCl2 toxicity in a minimal salts/glucose maintenance medium was about 10-fold greater than the toxicity in McCoy's culture medium. The HgCl2 toxicity in the latter medium was 3-fold greater than that in alpha-MEM which contains more of the metal chelating amino acids. When cells were exposed to HgCl2 there was a rapid and pronounced induction of single strand breaks in the DNA at time intervals and concentrations that paralleled the cellular toxicity. The DNA damage was shown to be true single strand breaks and not alkaline sensitive sites or double strand breaks by a variety of techniques. Consistent with the toxicity of HgCl2, the DNA damage under an equivalent exposure situation was more pronounced in the salts/glucose than in the McCoy's medium and more striking in the latter medium than in alpha-MEM. Most of the single strand breaks occurred within 1 h of exposure to the metal. We believe that the DNA damage caused by HgCl2 leads to cell death because the DNA single strand breaks are not readily repaired. DNA repair activity measured by CsCl density gradient techniques was elevated above the untreated levels at HgCl2 concentrations that produced little measurable binding of the metal to DNA or few single strand breaks assessed by the alkaline elution procedure. DNA repair activity decreased at HgCl2 concentrations that produced measurable DNA binding and single strand breaks. These irreversible interactions of HgCl2 with DNA may be responsible for its cytotoxic action in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号