首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

2.
Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.Abbreviations Norflurazon NF-4-chloro-5-(methylamino)-2-(,,,-trifluoro-m-tolyl)-3 (2H) pyridazinone - PAL phenylalanine ammonia-lyase - phytochrome photoequilibrium Pfr/Ptot - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome: Pr+Pfr  相似文献   

3.
In photoresponses regulated by phytochrome the effect of a red irradiation is not always reversed by far-red. This applies for instance to the influence of red light on the geotropic reactions of Avena coleoptiles. We could induce red/far-red reversibility by a short de-etiolating exposure to red light about 20 h prior to the experimental irradiations. This, was due to a decrease of the sensitivity to the low level of the far-red absorbing form of phytochrome that is established by far-red. Since etiolated plants react also to a wavelength of 520 nm (green light), it is advisable to expose the coleoptiles to a de-etiolating irradiation prior to manipulations in green safelight in order to prevent the plants from reacting to the green light.  相似文献   

4.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

5.
T. H. Attridge  M. Black  V. Gaba 《Planta》1984,162(5):422-426
An interaction is demonstrated between the effects of phytochrome and cryptochrome (the specific blue-light photoreceptor) in the inhibition of hypocotyl elongation of light-grown cucumber (Cucumis sativus L.) cv. Ridge Greenline seedlings. At certain fluence rates of blue light the total inhibition response is greater than the sum of the separate responses to each photoreceptor. The threshold for response to blue light is reduced at least 30-fold by additional red-light irradiation. The synergistic effect is demonstrated for two different fluence rates of red light. Synergism is mediated by phytochrome in both the cotyledons and the hypocotyl.Abbreviations and symbols BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light - photostationary state of phytochrome - c calculated   相似文献   

6.
N. Duell-Pfaff  E. Wellmann 《Planta》1982,156(3):213-217
Flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm.) occurs only after irradiation with ultraviolet light (UV), mainly from the UV-B (280–320 nm) spectral range. However, it is also controlled by phytochrome. A Pfr/Ptot ratio of approximately 20% is sufficient for a maximum phytochrome response as induced by pulse irradiation. Continuous red and far red light, as well as blue light, given after UV, are more effective than pulse irradiations. The response to blue light is considerably greater than that to red and far red light. Continuous red and blue light treatments can be substituted for by multiple pulses and can thus probably be ascribed to a multible induction effect. Continuous irradiations with red, far red and blue light also increase the UV-induced flavonoid synthesis if given before UV. The data indicate that besides phytochrome a separate blue light photoreceptor is involved in the regulation of the UV-induced flavonoid synthesis. This blue light receptor seems to require the presence of Pfr in order to be fully effective.Abbreviations HIR high irradiance response - Pfr far red absorhing form of phytochrome - Ptet total phytochrome - UV ultraviolet light  相似文献   

7.
8.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

9.
Günter Ruyters 《Planta》1988,174(3):422-425
Starch breakdown and respiratory O2 uptake in the green algaDunaliella tertiolecta (Butcher) are stimulated not only by blue, but also by red light. In the present study, attempts are described to identify the photoreceptor(s) involved. Fluence rate-response curves with different slopes in the ultraviolet (UV)/blue and in the red spectral region as well as differences in the kinetics and in the unfluence of dark pre-incubation on the stimulation of respiratory O2 uptake by blue and red light strongly indicate the action of two photoreceptors. Since the effect of red light shows some far-red reversibility, and since simultaneous irradiation with red and far-red light decreases the effectiveness of red light, the involvement of phytochrome — in addition to the UV/blue photoreceptor(s) — is suggested in the light-stimulated respiration inDunaliella.Abbreviation UV ultraviolet  相似文献   

10.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

11.
The effects of light irradiation on the arrangement of corticalmicrotubules (MTs) were examined in etiolated A vena mesocotylsand coleoptiles, and in Pisum epicotyls. Elongation of A venamesocotyls ceased as a result of irradiation with white lightwithin 1 h. The predominant orientation of MTs became more longitudinalwithin 1 h in epidermal cells and changed from transverse tooblique, after the elongation ceased, in parenchymal cells.Irradiation with red and with blue light also caused cessationof cell elongation and the same changes in the orientation ofMTs. Elongation of Avena coleoptiles ceased as a result of irradiationwith white light within 24 h. The predominant orientation ofMTs became more longitudinal in epidermal cells and changedfrom transverse to oblique in parenchymal cells. The changein orientation of MTs in epidermal cells preceded that in parenchymalcells. In Pisum epicotyls, elongation ceased as a result ofirradiation with white light within 1 h. Although the orientationsof MTs in epidermal cells did not show any remarkable change,those in parenchymal cells changed from transverse to obliqueafter cell elongation ceased. The change in orientation of MTs and the cessation of cell elongationof A vena mesocotyls induced by white-light irradiation wereboth significantly retarded by treatment with IAA. This resultsuggests that IAA is involved in maintaining the transverseorientation of MTs in Avena mesocotyls. (Received February 22, 1989; Accepted August 2, 1989)  相似文献   

12.
13.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):121-127
The results reported in this paper provide strong evidence to support the belief that the small percentage of phytochrome recovered in low-speed centrifugation pellets, when prepared in the absence of divalent cations after various in vivo irradiations, is not simply a manifestation of non-specific co-precipitation of soluble phytochrome.The far-red reversibility of the observed near-doubling of phytochrome pelletability after in vivo red irradiation indicates that phytochrome pelletability in the absence of divalent cations is a phytochrome-controlled response. The characteristics of the pelleted phytochrome indicate a strong, hydrophobic interaction with membranes. A tentative proposal to explain the observed characteristics of the association of phytochrome with membranous material in the absence of divalent cations after different in vivo irradiations has been put forward.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the fat-red light absorbing form - Ptot total phytochrome - R red light irradiation - FR far-red light irradiation  相似文献   

14.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

15.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

16.
M. G. Holmes  E. Schäfer 《Planta》1981,153(3):267-272
Detailed action spectra are presented for the inhibition of hypocotyl extension in dark-grown Sinapis alba L. seedlings by continuous (24 h) narrow waveband monochromatic light between 336 nm and 783 nm. The results show four distinct wavebands of major inhibitory action; these are centred in the ultra-violet (max=367 nm), blue (max=446 nm), red (max=653 nm) and far-red (max=712 nm) wavebands. Previous irradiation of the plants with red light (which also decreases Ptot) causes decreased inhibitory action by all wavelengths except those responsible for the red light inhibitory response. Pre-irradiation did not alter the wavelength of the action maxima. It is concluded that ultra-violet and blue light act mainly on a photoreceptor which is different from phytochrome.Abbreviations B blue - D dark - FR far-red - HIR high irradiance reaction - HW half power bandwith - Pr R absorbing form of phytochrome - Pfr FR absorbing form of phytochrome - Ptot total phytochrome=Pr+Pfr - R red - UV ultra violet  相似文献   

17.
Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component.  相似文献   

18.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

19.
−2 . The inductive effect of 100 Jm−2 red light could be partially reversed by subsequent far-red light only one time. On the other hand, the inductive effect of 1,000 Jm−2 red light was partially reversed by subsequent far-red light irradiation at least twice. These results indicate the involvement of phytochrome in this response. The inductive effect of blue light was repeatedly reversed by subsequent far-red light irradiation, suggesting that the blue-light induction was mainly mediated by phytochrome. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

20.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号