首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins that track growing microtubule (MT) ends are important for many aspects of intracellular MT function, but the mechanism by which these +TIPs accumulate at MT ends has been the subject of a long-standing controversy. In this issue, Bieling et al. (Bieling, P., S. Kandels-Lewis, I.A. Telley, J. van Dijk, C. Janke, and T. Surrey. 2008. J. Cell Biol. 183:1223–1233) reconstitute plus end tracking of EB1 and CLIP-170 in vitro, which demonstrates that CLIP-170 plus end tracking is EB1-dependent and that both +TIPs rapidly exchange between a soluble and a plus end–associated pool. This strongly supports the hypothesis that plus end tracking depends on a biochemical property of growing MT ends, and that the characteristic +TIP comets result from the generation of new +TIP binding sites through MT polymerization in combination with the exponential decay of these binding sites.  相似文献   

2.
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing “plus” ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.  相似文献   

3.
Microtubule (MT) plus end-tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end.  相似文献   

4.
The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.  相似文献   

5.
Microtubule plus end: a hub of cellular activities   总被引:4,自引:0,他引:4  
Microtubules (MTs) are highly dynamic polymers, which control many aspects of cellular architecture. Growing MT plus ends accumulate a specific set of evolutionary conserved factors, the so-called MT plus-end-tracking proteins (+TIPs). +TIPs regulate MT dynamics and the reciprocal interactions of MTs with the cell cortex, mitotic kinetochores or different cellular organelles. Most +TIPs can directly bind to MTs, but the molecular mechanisms of their specific targeting to the growing plus ends remain poorly understood. Recent studies suggest that the members of one particular +TIP family, EB1 and its homologues, are present in all eucaryotic kingdoms, interact directly with the majority of other known plus-end-associated proteins and may be responsible for their specific accumulation at the MT tips.  相似文献   

6.
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network.  相似文献   

7.
Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration.  相似文献   

8.
Cytoplasmic microtubules (MTs) serve as a rate‐limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end‐tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end‐tracking of CLIPA, the Kinesin‐7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi.  相似文献   

9.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   

10.
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.  相似文献   

11.
Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics1,2. One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization1. Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs1-3. Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker4, following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones5. This software is a MATLAB-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types6-8.  相似文献   

12.
Plus end tracking proteins (+TIPs) are a unique group of microtubule binding proteins that dynamically track microtubule (MT) plus ends. EB1 is a highly conserved +TIP with a fundamental role in MT dynamics, but it remains poorly understood in part because reported EB1 activities have differed considerably. One reason for this inconsistency could be the variable presence of affinity tags used for EB1 purification. To address this question and establish the activity of native EB1, we have measured the MT binding and tubulin polymerization activities of untagged EB1 and EB1 fragments and compared them with those of His-tagged EB1 proteins. We found that N-terminal His tags directly influence the interaction between EB1 and MTs, significantly increasing both affinity and activity, and that small amounts of His-tagged proteins act synergistically with larger amounts of untagged proteins. Moreover, the binding ratio between EB1 and tubulin can exceed 1:1, and EB1-MT binding curves do not fit simple binding models. These observations demonstrate that EB1 binding is not limited to the MT seam, and they suggest that EB1 binds cooperatively to MTs. Finally, we found that removal of tubulin C-terminal tails significantly reduces EB1 binding, indicating that EB1-tubulin interactions are mediated in part by the same tubulin acidic tails utilized by other MAPs. These binding relationships are important for helping to elucidate the complex of proteins at the MT tip.  相似文献   

13.
The microtubule (MT) “plus end” constitutes the platform for the accumulation of a structurally and functionally diverse group of proteins, collectively called “MT plus-end tracking proteins” (+TIPs). +TIPs control MT dynamics and link MTs to diverse sub-cellular structures. Neurospora crassa MicroTubule Binding protein-3 (MTB-3) is the homolog of yeast EB1, a highly conserved +TIP. To address the function of MTB-3, we examined strains with mtb-3 deletions, and we tagged MTB-3 with GFP to assess its dynamic behavior. MTB-3-GFP was present as comet-like structures distributed more or less homogeneously within the hyphal cytoplasm, and moving mainly towards the apex at speeds up to 4× faster than the normal hyphal elongation rates. MTB-3-GFP comets were present in all developmental stages, but were most abundant in mature hyphae. MTB-3-GFP comets were observed moving in anterograde and retrograde direction along the hypha. Retrograde movement was also observed as originating from the apical dome. The integrity of the microtubular cytoskeleton affects the presence and dynamics of MTB-3-GFP comets, while actin does not seem to play a role. The size of MTB-3-GFP comets is affected by the absence of dynactin and conventional kinesin. We detected no obvious morphological phenotypes in Δmtb-3 mutants but there were fewer MTs in Δmtb-3, MTs were less bundled and less organized. Compared to WT, both MT polymerization and depolymerization rates were significantly decreased in Δmtb-3. In summary, the lack of MTB-3 affects overall growth and morphological phenotypes of N. crassa only slightly, but deletion of mtb-3 has strong effect on MT dynamics.  相似文献   

14.
Regulation of microtubule (MT) dynamics is essential for proper spindle assembly and organization. Kinesin-8 family members are plus-end-directed motors that modulate plus-end MT dynamics by acting as MT depolymerases or as MT plus-end capping proteins. In this paper, we show that the human kinesin-8 Kif18B functions during mitosis to control astral MT organization. Kif18B is a MT plus-tip-tracking protein that localizes to the nucleus in interphase and is enriched at astral MT plus ends during early mitosis. Knockdown of Kif18B caused spindle defects, resulting in an increased number and length of MTs. A yeast two-hybrid screen identified an interaction of the C-terminal domain of Kif18B with the plus-end MT-binding protein EB1. EB1 knockdown disrupted Kif18B targeting to MT plus ends, indicating that EB1/Kif18B interaction is physiologically important. This interaction is direct, as the far C-terminal end of Kif18B is sufficient for binding to EB1 in vitro. Overexpression of this domain is sufficient for plus-end MT targeting in cells; however, targeting is enhanced by the motor domain, which cooperates with the tail to achieve proper Kif18B localization at MT plus ends. Our results suggest that Kif18B is a new MT dynamics regulatory protein that interacts with EB1 to control astral MT length.  相似文献   

15.
ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1–p150 association at the centrosome.  相似文献   

16.
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.  相似文献   

17.
Eribulin mesylate is a synthetic analog of halichondrin B known to bind tubulin and microtubules, specifically at their protein rich plus-ends, thereby dampening microtubule (MT) dynamics, arresting cells in mitosis, and inducing apoptosis. The proteins which bind to the MT plus-end are known as microtubule plus-end tracking proteins (+TIPs) and have been shown to promote MT growth and stabilization. Eribulin's plus-end binding suggests it may compete for binding sites with known +TIP proteins such as End-binding 1 (EB1). To better understand the impact of eribulin plus-end binding in regard to the proteins which normally bind there, cells expressing GFP-EB1 were treated with various concentrations of eribulin. In a concentration dependent manner, GFP-EB1 became dissociated from the MT plus-ends following drug addition. Similar results were found with immuno-stained fixed cells. Cells treated with low concentrations of eribulin also showed decreased ability to migrate, suggesting the decrease in MT dynamics may have a downstream effect. Extended exposure of eribulin to cells leads to total depolymerization of the MT array. Taken together, these data show eribulin effectively disrupts EB1 +TIP complex formation, providing mechanistic insights into the impact of eribulin on MT dynamics.  相似文献   

18.
MAP1B, a structural microtubule (MT)‐associated protein highly expressed in developing neurons, plays a key role in neurite and axon extension. However, not all molecular mechanisms by which MAP1B controls MT dynamics during these processes have been revealed. Here, we show that MAP1B interacts directly with EB1 and EB3 (EBs), two core ‘microtubule plus‐end tracking proteins’ (+TIPs), and sequesters them in the cytosol of developing neuronal cells. MAP1B overexpression reduces EBs binding to plus‐ends, whereas MAP1B downregulation increases binding of EBs to MTs. These alterations in EBs behaviour lead to changes in MT dynamics, in particular overstabilization and looping, in growth cones of MAP1B‐deficient neurons. This contributes to growth cone remodelling and a delay in axon outgrowth. Together, our findings define a new and crucial role of MAP1B as a direct regulator of EBs function and MT dynamics during neurite and axon extension. Our data provide a new layer of MT regulation: a classical MAP, which binds to the MT lattice and not to the end, controls effective concentration of core +TIPs thereby regulating MTs at their plus‐ends.  相似文献   

19.
Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient phagocytosis triggered by αMβ2 integrin/complement receptor activation. This property is not observed for EB1 and EB3. Accordingly, whereas CLIP-170 is dynamically enriched at the site of phagocytosis, EB1 is not. Furthermore, we observe that CLIP-170 controls the recruitment of the formin mDia1, an actin-nucleating protein, at the onset of phagocytosis and thereby controls actin polymerization events that are essential for phagocytosis. CLIP-170 directly interacts with the formin homology 2 domain of mDia1. The interaction between CLIP-170 and mDia1 is negatively regulated during αMβ2-mediated phagocytosis. Our results unravel a new microtubule/actin cooperation that involves CLIP-170 and mDia1 and that functions downstream of αMβ2 integrins.  相似文献   

20.
End-binding protein 1 (EB1) is one of the best studied plus-end tracking proteins. It is known that EB1 specifically binds the plus ends of microtubules (MTs) and promotes MT growth. EB1 activity is thought to be autoinhibited by an intramolecular interaction. Recent cryo-EM analyses showed that the CH domain of Mal3p (Schizosaccharomyces pombe EB1 homolog) binds to GMPCPP-MT (Sandblad, L. Cell 127 (2006) 1415-24), and strongly binds GTPγS-MT which is proposed to mimic MT plus ends better than GMPCPP-MT (Maurer S.P. et al. Cell 149 (2012) 371–82). Here, we report on the MT binding sites of the CH domain of EB1 as revealed by NMR using the transferred cross-saturation method. In this study, we used GMPCPP-MT and found that the MT binding sites are very similar to the binding site for GTPγS-MT as suggested by cryo-EM (Maurer S.P. et al. Cell 149 (2012) 371–82). Notably, the N-terminal tip of helix α6 of the CH domain did not make contact with GMPCPP-MT, in contrast to the cryo-EM study which showed that it is closely located to a putative switch region of β-tubulin in GTPγS-MT (Maurer S.P. et al. Cell 149 (2012) 371-82). Further, we found that the intramolecular interaction site of EB1 overlaps the MT binding sites, indicating that the MT binding sites are masked by interaction with the C-terminal domain. We propose a structural view of autoinhibition and its release mechanism through competition binding with binding partners such as adenomatous polyposis coli protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号